A Closer Look at Few-Shot Object Detection

被引:1
作者
Liu, Yuhao [1 ]
Dong, Le [1 ]
He, Tengyang [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Comp Sci & Technol, Chengdu, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII | 2024年 / 14432卷
基金
国家重点研发计划;
关键词
Few-shot learning; Object detection; Few-shot object detection; Transfer learning;
D O I
10.1007/978-981-99-8543-2_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot object detection, which aims to detect unseen classes in data-scarce scenarios, remains a challenging task. Most existing works adopt Faster RCNN as the basic framework and employ fine-tuning paradigm to tackle this problem. However, the intrinsic concept drift in the Region Proposal Network and the rejection of false positive region proposals hinder model performance. In this paper, we introduce a simple and effective task adapter in RPN, which decouples it from the backbone network to obtain category-agnostic knowledge. In the last two layers of the task adapter, we use large-kernel spatially separable convolution to adaptively detect objects at different scales. In addition, We design an offline structural reparameterization approach to better initialize box classifiers by constructing an augmented dataset to learn initial novel prototypes and explicitly incorporating priors from base training in extremely low-shot scenarios. Extensive experiments on various benchmarks have demonstrated that our proposed method is significantly superior to other methods and is comparative with state-of-the-art performance.
引用
收藏
页码:430 / 447
页数:18
相关论文
共 50 条
[31]   Industrial few-shot fractal object detection [J].
Haoran Huang ;
Xiaochuan Luo ;
Chen Yang .
Neural Computing and Applications, 2023, 35 :21055-21069
[32]   SEMANTIC ENHANCED FEW-SHOT OBJECT DETECTION [J].
Wang, Zheng ;
Gao, Yingjie ;
Liu, Qingjie ;
Wang, Yunhong .
2024 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2024, :575-581
[33]   Few-Shot Object Detection in Unseen Domains [J].
Guirguis, Karim ;
Eskandar, George ;
Kayser, Matthias ;
Yang, Bin ;
Beyerer, Juergen .
2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, :98-107
[34]   Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild [J].
Xiao, Yang ;
Marlet, Renaud .
COMPUTER VISION - ECCV 2020, PT XVII, 2020, 12362 :192-210
[35]   FEW-SHOT OBJECT DETECTION WITH FOREGROUND AUGMENT AND BACKGROUND ATTENUATION [J].
Zeng, Ying ;
Yuan, Haoliang .
PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCEON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2022, :42-47
[36]   Dual-Awareness Attention for Few-Shot Object Detection [J].
Chen, Tung-, I ;
Liu, Yueh-Cheng ;
Su, Hung-Ting ;
Chang, Yu-Cheng ;
Lin, Yu-Hsiang ;
Yeh, Jia-Fong ;
Chen, Wen-Chin ;
Hsu, Winston H. .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :291-301
[37]   Implicit Feature Contrastive Learning for Few-Shot Object Detection [J].
Li, Gang ;
Zhou, Zheng ;
Zhang, Yang ;
Xu, Chuanyun ;
Ruan, Zihan ;
Lv, Pengfei ;
Wang, Ru ;
Fan, Xinyu ;
Tan, Wei .
CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 84 (01) :1615-1632
[38]   FRDet: Few-shot object detection via feature reconstruction [J].
Chen, Zhihao ;
Mao, Yingchi ;
Qian, Yong ;
Pan, Zhenxiang ;
Xu, Shufang .
IET IMAGE PROCESSING, 2023, 17 (12) :3599-3615
[39]   Few-shot object detection via message transfer mechanism [J].
Lv, Wen ;
Shi, Hongbo ;
Tan, Shuai ;
Song, Bing ;
Tao, Yang .
JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
[40]   Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild [J].
Xiao, Yang ;
Lepetit, Vincent ;
Marlet, Renaud .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) :3090-3106