An Improved Mask R-CNN Micro-Crack Detection Model for the Surface of Metal Structural Parts

被引:6
作者
Yang, Fan [1 ]
Huo, Junzhou [1 ]
Cheng, Zhang [1 ]
Chen, Hao [1 ]
Shi, Yiting [1 ]
机构
[1] Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
mask R-CNN; micro-crack; target detection; metal structural parts; deformable convolution kernel; attention mechanism;
D O I
10.3390/s24010062
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Micro-crack detection is an essential task in critical equipment health monitoring. Accurate and timely detection of micro-cracks can ensure the healthy and stable service of equipment. Aiming at improving the low accuracy of the conventional target detection model during the task of detecting micro-cracks on the surface of metal structural parts, this paper built a micro-cracks dataset and explored a detection performance optimization method based on Mask R-CNN. Firstly, we improved the original FPN structure, adding a bottom-up feature fusion path to enhance the information utilization rate of the underlying feature layer. Secondly, we added the methods of deformable convolution kernel and attention mechanism to ResNet, which can improve the efficiency of feature extraction. Lastly, we modified the original loss function to optimize the network training effect and model convergence rate. The ablation comparison experiments shows that all the improvement schemes proposed in this paper have improved the performance of the original Mask R-CNN. The integration of all the improvement schemes can produce the most significant performance improvement effects in recognition, classification, and positioning simultaneously, thus proving the rationality and feasibility of the improved scheme in this paper.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] An Improved Mask R-CNN Algorithm for High Object Detection Speed and Accuracy
    Liu, Qingchuan
    Ayub, Muhammad Azmi
    Ruslan, Fazlina Ahmat
    Ab Patar, Mohd Nor Azmi
    Abdul-Rahman, Shuzlina
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2023, 2023, 1771 : 107 - 118
  • [22] Weld crack detection and quantification using laser thermography, mask R-CNN, and CycleGAN
    Kim, Chisung
    Hwang, Soonkyu
    Sohn, Hoon
    AUTOMATION IN CONSTRUCTION, 2022, 143
  • [23] Wall Cracks Detection in Aerial Images Using Improved Mask R-CNN
    Chen, Wei
    Chen, Caoyang
    Liu, Mi
    Zhou, Xuhong
    Tan, Haozhi
    Zhang, Mingliang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 767 - 782
  • [24] Application of Mask R-CNN and YOLOv8 Algorithms for Concrete Crack Detection
    Choi, Yongjin
    Bae, Byongkyu
    Han, Taek Hee
    Ahn, Jaehun
    IEEE ACCESS, 2024, 12 : 165314 - 165321
  • [25] An Improved Mask R-CNN with Global Context Modeling for Instance Segmentation
    Song, Yongbin
    Chen, Guanghua
    Liu, Jingjing
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 5644 - 5648
  • [26] Detection and Instance Segmentation of Grape Clusters in Orchard Environments Using an Improved Mask R-CNN Model
    Huang, Xiang
    Peng, Dongdong
    Qi, Hengnian
    Zhou, Lei
    Zhang, Chu
    AGRICULTURE-BASEL, 2024, 14 (06):
  • [27] A Research on Landslides Automatic Extraction Model Based on the Improved Mask R-CNN
    Liu, Peng
    Wei, Yongming
    Wang, Qinjun
    Xie, Jingjing
    Chen, Yu
    Li, Zhichao
    Zhou, Hongying
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (03)
  • [28] Apple detection and instance segmentation in natural environments using an improved Mask Scoring R-CNN Model
    Wang, Dandan
    He, Dongjian
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [29] Detection of Parking Slots Based on Mask R-CNN
    Jiang, Shaokang
    Jiang, Haobin
    Ma, Shidian
    Jiang, Zhongxu
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [30] Potato Detection and Segmentation Based on Mask R-CNN
    Lee H.-S.
    Shin B.-S.
    Journal of Biosystems Engineering, 2020, 45 (4) : 233 - 238