Toward incompatible quantum limits on multiparameter estimation

被引:12
|
作者
Xia, Binke [1 ]
Huang, Jingzheng [1 ,2 ,3 ]
Li, Hongjing [1 ,2 ,3 ]
Wang, Han [1 ]
Zeng, Guihua [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Quantum Sensing & Informat Proc, Sch Sensing Sci & Engn, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
[3] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
中国国家自然科学基金;
关键词
UNCERTAINTY; ERROR;
D O I
10.1038/s41467-023-36661-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Achieving the ultimate precisions formultiple parameters simultaneously is an outstanding challenge in quantum physics, because the optimal measurements for incompatible parameters cannot be performed jointly due to the Heisenberg uncertainty principle. In this work, a criterion proposed for multiparameter estimation provides a possible way to beat this curse. According to this criterion, it is possible to mitigate the influence of incompatibility meanwhile improve the ultimate precisions by increasing the variances of the parameter generators simultaneously. For demonstration, a scheme involving high-order Hermite-Gaussian states as probes is proposed for estimating the spatial displacement and angular tilt of light at the same time, and precisions up to 1.45 nm and 4.08 nrad are achieved in experiment simultaneously. Consequently, our findings provide a deeper insight into the role of Heisenberg uncertainty principle in multiparameter estimation, and contribute in several ways to the applications of quantum metrology.
引用
收藏
页数:12
相关论文
共 38 条
  • [1] Simultaneous measurement of multiple incompatible observables and tradeoff in multiparameter quantum estimation
    Chen, Hongzhen
    Wang, Lingna
    Yuan, Haidong
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [2] Imaginarity-free quantum multiparameter estimation
    Miyazaki, Jisho
    Matsumoto, Keiji
    QUANTUM, 2022, 6
  • [3] Uncertainty and trade-offs in quantum multiparameter estimation
    Kull, Ilya
    Guerin, Philippe Allard
    Verstraete, Frank
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (24)
  • [4] Incorporating Heisenberg's Uncertainty Principle into Quantum Multiparameter Estimation
    Lu, Xiao-Ming
    Wang, Xiaoguang
    PHYSICAL REVIEW LETTERS, 2021, 126 (12)
  • [5] Comparison of estimation limits for quantum two-parameter estimation
    Yung, Simon K.
    Conlon, Lorcan O.
    Zhao, Jie
    Lam, Ping Koy
    Assad, Syed M.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [6] Multiparameter estimation of quantum metrology in a Heisenberg system with Dzyaloshinskii-Moriya interaction
    Ben Hammou, Rachid
    EL Achab, Abdelfattah
    Habiballah, Nabil
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (24):
  • [7] A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging
    Albarelli, F.
    Barbieri, M.
    Genoni, M. G.
    Gianani, I
    PHYSICS LETTERS A, 2020, 384 (12)
  • [8] Generalized-mean Cramer-Rao bounds for multiparameter quantum metrology
    Lu, Xiao-Ming
    Ma, Zhihao
    Zhang, Chengjie
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [9] Quantum scale estimation
    Rubio, Jesus
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (01)
  • [10] Quantum computation speedup limits from quantum metrological precision bounds
    Demkowicz-Dobrzanski, Rafal
    Markiewicz, Marcin
    PHYSICAL REVIEW A, 2015, 91 (06)