A survey of multi-agent deep reinforcement learning with communication

被引:15
|
作者
Zhu, Changxi [1 ]
Dastani, Mehdi [1 ]
Wang, Shihan [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
关键词
Multi-agent reinforcement learning; Deep reinforcement learning; Communication; Survey; COORDINATION;
D O I
10.1007/s10458-023-09633-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Communication is an effective mechanism for coordinating the behaviors of multiple agents, broadening their views of the environment, and to support their collaborations. In the field of multi-agent deep reinforcement learning (MADRL), agents can improve the overall learning performance and achieve their objectives by communication. Agents can communicate various types of messages, either to all agents or to specific agent groups, or conditioned on specific constraints. With the growing body of research work in MADRL with communication (Comm-MADRL), there is a lack of a systematic and structural approach to distinguish and classify existing Comm-MADRL approaches. In this paper, we survey recent works in the Comm-MADRL field and consider various aspects of communication that can play a role in designing and developing multi-agent reinforcement learning systems. With these aspects in mind, we propose 9 dimensions along which Comm-MADRL approaches can be analyzed, developed, and compared. By projecting existing works into the multi-dimensional space, we discover interesting trends. We also propose some novel directions for designing future Comm-MADRL systems through exploring possible combinations of the dimensions.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey
    Orr, James
    Dutta, Ayan
    SENSORS, 2023, 23 (07)
  • [2] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [3] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [4] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [5] Learning multi-agent communication with double attentional deep reinforcement learning
    Hangyu Mao
    Zhengchao Zhang
    Zhen Xiao
    Zhibo Gong
    Yan Ni
    Autonomous Agents and Multi-Agent Systems, 2020, 34
  • [6] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [7] A survey on scalability and transferability of multi-agent deep reinforcement learning
    Yan C.
    Xiang X.-J.
    Xu X.
    Wang C.
    Zhou H.
    Shen L.-C.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (12): : 3083 - 3102
  • [8] Learning multi-agent communication with double attentional deep reinforcement learning
    Mao, Hangyu
    Zhang, Zhengchao
    Xiao, Zhen
    Gong, Zhibo
    Ni, Yan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2020, 34 (01)
  • [9] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [10] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)