INTERPOLATION THEOREM FOR DISCRETE NET SPACES

被引:0
|
作者
Kalidolday, A. H. [1 ]
Nursultanov, E. D. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Moscow MV Lomonosov State Univ, Kazakhstan Branch, Astana, Kazakhstan
来源
JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE | 2023年 / 120卷 / 04期
关键词
Net spaces; discrete Net spaces; Marcinkiewicz type interpolation theorem; HARDY-LITTLEWOOD; FOURIER-SERIES; INEQUALITIES; MULTIPLIERS;
D O I
10.26577/JMMCS2023v120i4a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study discrete net spaces np,q(M), where M is some fixed family of sets from the set of integers Z. Note that in the case when the net M is the set of all finite subsets of integers, the space np,q(M) coincides with the discrete Lorentz space lp,q(M). For these spaces, the classical interpolation theorems of Marcinkiewicz-Calderon are known. In this paper, we study the interpolation properties of discrete network spaces np,q(M),in the case when the family of sets M is the set of all finite segments from the class of integers Z, i.e. finite arithmetic progressions with a step equal to 1. These spaces are characterized by such properties that for monotonically nonincreasing sequences the norm in the space np,q(M) coincides with the norm of the discrete Lorentz space lp,q(M). At the same time, in contrast to the Lorentz spaces, the given spaces np,q(M) may contain sequences that do not tend to zero. The main result of this work is the proof of the interpolation theorem for these spaces with respect to the real interpolation method. It is shown that the scale of discrete net spaces np,q(M) is closed with respect to the real interpolation method. As a corollary, an interpolation theorem of Marcinkiewicz type is presented. These assertions make it possible to obtain strong estimates from weak estimates.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 50 条
  • [21] Net Spaces and Boundedness of Integral Operators
    Erlan Nursultanov
    Sergey Tikhonov
    Journal of Geometric Analysis, 2011, 21 : 950 - 981
  • [22] The Hardy-Littlewood theorem for double Fourier-Haar series from mixed metric Lebesgue Lp[0,1]2 and net Np, q(M) spaces
    Bashirova, A. N.
    Nursultanov, E. D.
    ANALYSIS MATHEMATICA, 2022, 48 (01) : 5 - 17
  • [23] Interpolation of Morrey-Campanato and related smoothness spaces
    Yuan Wen
    Winfried, Sickel
    Yang DaChun
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (09) : 1835 - 1908
  • [24] Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales
    Bekjan, Turdebek N.
    Chen, Zeqian
    Perrin, Mathilde
    Yin, Zhi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (07) : 2483 - 2505
  • [25] Sampling and interpolation in de Branges spaces with doubling phase
    Marzo, Jordi
    Nitzan, Shahaf
    Olsen, Jan-Fredrik
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 117 : 365 - 395
  • [26] Interpolation in the spaces Np (1 < p < ∞)
    Mestrovic, Romeo
    Susic, Jela
    FILOMAT, 2013, 27 (02) : 291 - 299
  • [27] Real Interpolation of Small Lebesgue Spaces in a Critical Case
    Ahmed, Irshaad
    Hafeez, Aneesa
    Murtaza, Ghulam
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [28] Complex Interpolation between Hilbert, Banach and Operator Spaces
    Pisier, Gilles
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 208 (978) : 1 - +
  • [30] Multiplier theorem for Hankel transform on Hardy spaces
    Jacek Dziubański
    Marcin Preisner
    Monatshefte für Mathematik, 2010, 159 : 1 - 12