INTERPOLATION THEOREM FOR DISCRETE NET SPACES

被引:0
|
作者
Kalidolday, A. H. [1 ]
Nursultanov, E. D. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Moscow MV Lomonosov State Univ, Kazakhstan Branch, Astana, Kazakhstan
来源
JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE | 2023年 / 120卷 / 04期
关键词
Net spaces; discrete Net spaces; Marcinkiewicz type interpolation theorem; HARDY-LITTLEWOOD; FOURIER-SERIES; INEQUALITIES; MULTIPLIERS;
D O I
10.26577/JMMCS2023v120i4a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study discrete net spaces np,q(M), where M is some fixed family of sets from the set of integers Z. Note that in the case when the net M is the set of all finite subsets of integers, the space np,q(M) coincides with the discrete Lorentz space lp,q(M). For these spaces, the classical interpolation theorems of Marcinkiewicz-Calderon are known. In this paper, we study the interpolation properties of discrete network spaces np,q(M),in the case when the family of sets M is the set of all finite segments from the class of integers Z, i.e. finite arithmetic progressions with a step equal to 1. These spaces are characterized by such properties that for monotonically nonincreasing sequences the norm in the space np,q(M) coincides with the norm of the discrete Lorentz space lp,q(M). At the same time, in contrast to the Lorentz spaces, the given spaces np,q(M) may contain sequences that do not tend to zero. The main result of this work is the proof of the interpolation theorem for these spaces with respect to the real interpolation method. It is shown that the scale of discrete net spaces np,q(M) is closed with respect to the real interpolation method. As a corollary, an interpolation theorem of Marcinkiewicz type is presented. These assertions make it possible to obtain strong estimates from weak estimates.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 50 条
  • [1] Interpolation Theorem for Discrete Net Spaces
    Kalidolday, Aitolkyn H.
    Nursultanov, Erlan D.
    EXTENDED ABSTRACTS MWCAPDE 2023, 2024, 1 : 71 - 78
  • [2] MARCINKIEWICZ'S INTERPOLATION THEOREM FOR LINEAR OPERATORS ON NET SPACES
    Kalidolday, A. H.
    Nursultanov, E. D.
    EURASIAN MATHEMATICAL JOURNAL, 2022, 13 (04): : 61 - 69
  • [3] Interpolation Properties of Certain Classes of Net Spaces
    Kalidolday, A.
    Nursultanov, E.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (05) : 1870 - 1878
  • [4] Interpolation Theorem for Anisotropic Net Spaces
    Bashirova, A. N.
    Kalidolday, A. H.
    Nursultanov, E. D.
    RUSSIAN MATHEMATICS, 2021, 65 (08) : 1 - 12
  • [5] Interpolation of nonlinear integral Urysohn operators in net spaces
    Kalidolday, A. H.
    Nursultanov, E. D.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 66 - 73
  • [6] INTERPOLATION METHODS FOR ANISOTROPIC NET SPACES
    Bashirova, A. N.
    Kalidolday, A. H.
    Nursultanov, E. D.
    EURASIAN MATHEMATICAL JOURNAL, 2024, 15 (02):
  • [7] Interpolation Properties of Certain Classes of Net Spaces
    A. Kalidolday
    E. Nursultanov
    Lobachevskii Journal of Mathematics, 2023, 44 : 1870 - 1878
  • [8] Marcinkiewicz-type interpolation theorem for Morrey-type spaces and its corollaries
    Burenkov, V. I.
    Chigambayeva, D. K.
    Nursultanov, E. D.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (01) : 87 - 108
  • [10] A NEW GENERALIZATION OF BOAS THEOREM FOR SOME LORENTZ SPACES Λq(ω)
    Kopezhanova, Aigerim
    Nursultanov, Erlan
    Persson, Lars-Erik
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03): : 619 - 633