Machine learning-based radiomics for amyotrophic lateral sclerosis diagnosis

被引:6
作者
Tafuri, Benedetta [1 ,2 ]
Milella, Giammarco [1 ,2 ]
Filardi, Marco [1 ,2 ]
Giugno, Alessia [2 ,4 ]
Zoccolella, Stefano [2 ,3 ]
Tamburrino, Ludovica [1 ,2 ]
Gnoni, Valentina [2 ]
Urso, Daniele [2 ]
De Blasi, Roberto [2 ]
Nigro, Salvatore [2 ]
Logroscino, Giancarlo [1 ,2 ]
机构
[1] Univ Bari Aldo Moro, Dept Translat Biomed & Neurosci DiBraiN, Bari, Italy
[2] Univ Bari Aldo Moro, Ctr Neurodegenerat Dis & Aging Brain, Pia Fdn Card G Panico, Tricase, Italy
[3] Azienda Sanit Locale ASL Bari, San Paolo Hosp, Neurol Unit, Bari, Italy
[4] Magna Graecia Univ Catanzaro, Inst Neurol, Dept Med & Surg Sci, Catanzaro, Italy
关键词
Amyotrophic lateral sclerosis; Magnetic resonance imaging; Radiomics; Machine learning; CLASSIFICATION; CRITERIA; SYSTEM; MRI;
D O I
10.1016/j.eswa.2023.122585
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Timely diagnosis and accurate phenotyping of amyotrophic lateral sclerosis (ALS) is of paramount importance for the clinical management of patients. Magnetic Resonance Imaging (MRI) plays a key role in the clinical work-up of ALS. In this study we investigated the usefulness of radiomics analysis on T1-weighted MRI to define a machine learning-based classification pipeline.We collected 53 controls and 84 patients with ALS from three different scanners. Following dataset harmonization, radiomics analysis was conducted using different features selection and machine learning algorithms to identify the best combination in distinguishing ALS patients from controls and "Classic" from "non-Classical" ALS motor phenotypes.The combined Least Absolute Shrinkage and Selection Operator with Support Vector Machine (SVM) algorithm classified ALS patients with an accuracy of 81.1%. The Maximum Relevance Minimum Redundancy with SVM pipeline was able to distinguish "Classic" from "non-Classical" motor phenotypes with 92.9% accuracy.Radiomics is a promising approach to characterize brain abnormalities in patients with ALS. Radiomics could help to improve diagnosis and may prove useful to assess disease severity and longitudinally monitor ALS patients along the disease course.
引用
收藏
页数:9
相关论文
共 70 条
[1]   INVOLVEMENT OF THE AMYGDALA, DENTATE AND HIPPOCAMPUS IN MOTOR-NEURON DISEASE [J].
ANDERSON, VER ;
CAIRNS, NJ ;
LEIGH, PN .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1995, 129 :75-78
[2]  
[Anonymous], TRANSF OUR WORLD 203
[3]   MWMOTE-Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning [J].
Barua, Sukarna ;
Islam, Md. Monirul ;
Yao, Xin ;
Murase, Kazuyuki .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (02) :405-425
[4]   Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns [J].
Bede, Peter ;
Iyer, Parameswaran M. ;
Finegan, Eoin ;
Omer, Taha ;
Hardiman, Orla .
NEUROIMAGE-CLINICAL, 2017, 15 :653-658
[5]   Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality [J].
Bede, Peter ;
Bokde, Arun ;
Elamin, Marwa ;
Byrne, Susan ;
McLaughlin, Russell L. ;
Jordan, Norah ;
Hampel, Harald ;
Gallagher, Laura ;
Lynch, Catherine ;
Fagan, Andrew J. ;
Pender, Niall ;
Hardiman, Orla .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2013, 84 (07) :766-773
[6]   Using Two-Step Cluster Analysis and Latent Class Cluster Analysis to Classify the Cognitive Heterogeneity of Cross-Diagnostic Psychiatric Inpatients [J].
Benassi, Mariagrazia ;
Garofalo, Sara ;
Ambrosini, Federica ;
Sant'Angelo, Rosa Patrizia ;
Raggini, Roberta ;
De Paoli, Giovanni ;
Ravani, Claudio ;
Giovagnoli, Sara ;
Orsoni, Matteo ;
Piraccini, Giovanni .
FRONTIERS IN PSYCHOLOGY, 2020, 11
[7]   Stages of pTDP-43 Pathology in Amyotrophic Lateral Sclerosis [J].
Brettschneider, Johannes ;
Del Tredici, Kelly ;
Toledo, Jon B. ;
Robinson, John L. ;
Irwin, David J. ;
Grossman, Murray ;
Suh, EunRan ;
Van Deerlin, Vivianna M. ;
Wood, Elisabeth M. ;
Baek, Young ;
Kwong, Linda ;
Lee, Edward B. ;
Elman, Lauren ;
McCluskey, Leo ;
Fang, Lubin ;
Feldengut, Simone ;
Ludolph, Albert C. ;
Lee, Virginia M. -Y. ;
Braak, Heiko ;
Trojanowski, John Q. .
ANNALS OF NEUROLOGY, 2013, 74 (01) :20-38
[8]   El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis [J].
Brooks, BR ;
Miller, RG ;
Swash, M ;
Munsat, TL .
AMYOTROPHIC LATERAL SCLEROSIS AND OTHER MOTOR NEURON DISORDERS, 2000, 1 (05) :293-299
[10]   The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function [J].
Cedarbaum, JM ;
Stambler, N ;
Malta, E ;
Fuller, C ;
Hilt, D ;
Thurmond, B ;
Nakanishi, A .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1999, 169 (1-2) :13-21