Asymmetric Electrode Design for High-Area Capacity and High-Energy Efficiency Hybrid Zn Batteries

被引:0
|
作者
Ma, Yanyi [1 ]
Zhao, Zhongxi [1 ]
Cui, Yifan [1 ]
Yu, Jianwen [1 ]
Tan, Peng [1 ]
机构
[1] Univ Sci & Technol China USTC, Dept Thermal Sci & Energy Engn, Hefei 230026, Anhui, Peoples R China
关键词
area capacity; asymmetric electrode; energy efficiency; hybrid Zn battery; optimal N/P ratio; AIR BATTERIES; CATHODE; GROWTH;
D O I
10.1002/smll.202308500
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Compared to Zn-air batteries, by integrating Zn-transition metal compound reactions and oxygen redox reactions at the cell level, hybrid Zn batteries are proposed to achieve higher energy density and energy efficiency. However, attaining relatively higher energy efficiency relies on controlling the discharge capacity. At high area capacities, the proportion of the high voltage section can be neglected, resulting in a lower energy efficiency similar to that of Zn-air batteries. Here, a high-loading integrated electrode with an asymmetric structure and asymmetric wettability is fabricated, which consists of a thick nickel hydroxide (Ni(OH)2) electrode layer with vertical array channels achieving high capacity and high utilization, and a thin NiCo2O4 nanopartical-decorated N-doped graphene nanosheets (NiCo2O4/N-G) catalyst layer with superior oxygen catalytic activity. The asymmetric wettability satisfies the wettability requirements for both Zn-Ni and Zn-air reactions. The hybrid Zn battery with the integrated electrode exhibits a remarkable peak power density of 141.9 mW cm-2, superior rate performance with an energy efficiency of 71.4% even at 20 mA cm-2, and exceptional cycling stability maintaining a stable energy efficiency of approximate to 84% at 2 mA cm-2 over 100 cycles (400 h). This work fabricates a high-loading integrated electrode with an asymmetric structure and asymmetric wettability for hybrid Zn batteries, which exhibits a remarkable peak power density of 141.9 mW cm-2, superior rate performance with an energy efficiency of 71.4% even at 20 mA cm-2, and exceptional cycling stability, maintaining a stable energy efficiency of approximate to 84% at over 400 h.image
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Multidimensional Ordered Bifunctional Air Electrode Enables Flash Reactants Shuttling for High-Energy Flexible Zn-Air Batteries
    Jiang, Yi
    Deng, Ya-Ping
    Liang, Ruilin
    Fu, Jing
    Luo, Dan
    Liu, Guihua
    Li, Jingde
    Zhang, Zhen
    Hu, Yongfeng
    Chen, Zhongwei
    ADVANCED ENERGY MATERIALS, 2019, 9 (24)
  • [32] High Capacity and High Density Functional Conductive Polymer and SiO Anode for High-Energy Lithium-Ion Batteries
    Zhao, Hui
    Yuca, Neslihan
    Zheng, Ziyan
    Fu, Yanbao
    Battaglia, Vincent S.
    Abdelbast, Guerfi
    Zaghib, Karim
    Liu, Gao
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (01) : 862 - 866
  • [33] Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes
    Tu, Zhengyuan
    Zachman, Michael J.
    Choudhury, Snehashis
    Wei, Shuya
    Ma, Lin
    Yang, Yuan
    Kourkoutis, Lena F.
    Archer, Lynden A.
    ADVANCED ENERGY MATERIALS, 2017, 7 (08)
  • [34] High-Energy Redox-Flow Batteries with Hybrid Metal Foam Electrodes
    Park, Min-Sik
    Lee, Nam-Jin
    Lee, Seung-Wook
    Kim, Ki Jae
    Oh, Duk-Jin
    Kim, Young-Jun
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (13) : 10729 - 10735
  • [35] Asymmetric allyl-activation of organosulfides for high-energy reversible redox flow batteries
    Weng, Guo-Ming
    Yang, Bin
    Liu, Chi-You
    Du, Guan-Ying
    Li, Elise Y.
    Lu, Yi-Chun
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) : 2244 - 2252
  • [36] High-Energy LHC design
    Abelleira, J. L.
    Amorim, D.
    Antipov, S. A.
    Apyan, A.
    Arsenyev, S.
    Barranco, J.
    Benedikt, M.
    Bruce, R.
    Burkart, F.
    Cai, Y.
    Crouch, M.
    Cruz-Alaniz, E.
    Fartoukh, S.
    Giovannozzi, M.
    Goddard, B.
    Guillermo Canton, G.
    Hofer, M.
    Kersevan, R.
    Mirave, P. Martinez
    Mertens, V.
    Mether, L.
    Muttoni, Y.
    Nosochkov, Y.
    Ohmi, K.
    Oide, K.
    Osborne, J.
    Parma, V.
    Pieloni, T.
    Raginel, V.
    Redaelli, S.
    Risselada, T.
    Rivkin, L.
    Ruehl, I.
    Salvant, B.
    Schoerling, D.
    Seryi, A.
    Shaposhnikova, E.
    Tambasco, C.
    Tavian, L.
    Todesco, E.
    Tomas, R.
    Tommasini, D.
    Valchkova-Georgieva, F.
    van Riesen-Haupt, L.
    Venturi, V.
    Wollmann, D.
    Zhou, D.
    Zimmermann, F.
    9TH INTERNATIONAL PARTICLE ACCELERATOR CONFERENCE (IPAC18), 2018, 1067
  • [37] Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries
    Li, Cai-Cai
    Zhang, Xu-Sheng
    Zhu, Yu-Hui
    Zhang, Ying
    Xin, Sen
    Wan, Li-Jun
    Guo, Yu-Guo
    ENERGY MATERIALS, 2021, 1 (02):
  • [38] SMALL AREA, HIGH-ENERGY BONDING
    CRANSTON, BH
    MACHUSAK, DA
    SKINKLE, ME
    WESTERN ELECTRIC ENGINEER, 1978, 22 (04): : 26 - 35
  • [39] A LiF Nanoparticle-Modified Graphene Electrode for High-Power and High-Energy Lithium Ion Batteries
    Wu, Zhong-Shuai
    Xue, Lili
    Ren, Wencai
    Li, Feng
    Wen, Lei
    Cheng, Hui-Ming
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (15) : 3290 - 3297
  • [40] High Capacity and Energy Density of Zn-Ni-Co-P Nanowire Arrays as an Advanced Electrode for Aqueous Asymmetric Supercapacitor
    Lei, Xueyan
    Ge, Shicheng
    Tan, Yihong
    Wang, Zhi
    Li, Jing
    Li, Xuefeng
    Hu, Guojing
    Zhu, Xingqun
    Huang, Meng
    Zhu, Yanwu
    Xiang, Bin
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (08) : 9158 - 9168