Nanofibrous Membrane Promotes and Sustains Vascular Endothelial Barrier Function

被引:2
作者
Liu, Jiafeng [1 ]
Wei, Qiang [1 ,2 ]
Man, Kun [1 ]
Liang, Cindy [1 ]
Zhou, Yuting [3 ]
Liu, Xiaohua [4 ]
Xin, Hong-Bo [2 ]
Yang, Yong [1 ]
机构
[1] Univ North Texas, Dept Biomed Engn, Denton, TX 76207 USA
[2] Nanchang Univ, Sch Life Sci, Nanchang 330031, Jiangxi, Peoples R China
[3] Qing Dao Univ, Qingdao Med Coll, Qingdao 266073, Shandong, Peoples R China
[4] Univ Missouri, Dept Chem & Biomed Engn, Columbia, MO 65211 USA
关键词
nanofibers; 2D alignment; pore size; endothelial cells; barrier function; permeability; BLOOD-BRAIN-BARRIER; PORE-SIZE; MODEL; ANGIOGENESIS; HEALTH; FLOW; PROLIFERATION; PERMEABILITY; TOPOGRAPHY; CADHERIN;
D O I
10.1021/acsabm.3c00668
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The vascular endothelium serves as a physical barrier between the circulating blood and surrounding tissue and acts as a critical regulator of various physiological processes. In vitro models involving vasculature rely on the maintenance of the endothelial barrier function. In this study, we fabricated 2D aligned nanofibrous membranes with distinct pore sizes via electrospinning and investigated the effect of membrane pore size on endothelial barrier function. Our results demonstrated that the use of the nanofibrous membranes promoted the formation of a tight vascular endothelium and sustained barrier function for over one month in comparison with conventional transwell setups. Moreover, the examination of the nucleocytoplasmic localization of yes-associated protein (YAP) in the endothelial cells indicated that nanofibrous membrane promoted YAP expression and its nuclear localization, critical to endothelial barrier function. Furthermore, the comparison of permeability between random and aligned nanofibrous membranes underscored the importance of pore size in preserving barrier function. Our findings offer a valuable strategy for creating more physiologically relevant in vitro vascular models and contribute to the understanding of endothelial barrier formation and maintenance mechanisms.
引用
收藏
页码:4988 / 4997
页数:10
相关论文
共 59 条
[1]   Mimicking the Natural Basement Membrane for Advanced Tissue Engineering [J].
不详 .
BIOMACROMOLECULES, 2022, 23 (08) :3081-3103
[2]   Microfluidic organ-on-a-chip model of the outer blood-retinal barrier with clinically relevant read-outs for tissue permeability and vascular structure [J].
Arik, Yusuf B. ;
Buijsman, Wesley ;
Loessberg-Zahl, Joshua ;
Cuartas-Velez, Carlos ;
Veenstra, Colin ;
Logtenberg, Sander ;
Grobbink, Anne M. ;
Bergveld, Piet ;
Gagliardi, Giuliana ;
den Hollander, Anneke, I ;
Bosschaart, Nienke ;
van den Berg, Albert ;
Passier, Robert ;
van der Meer, Andries D. .
LAB ON A CHIP, 2021, 21 (02) :272-283
[3]   The blood-brain barrier and blood-tumour barrier in brain tumours and metastases [J].
Arvanitis, Costas D. ;
Ferraro, Gino B. ;
Jain, Rakesh K. .
NATURE REVIEWS CANCER, 2020, 20 (01) :26-41
[4]  
Baker BM, 2015, NAT MATER, V14, P1262, DOI [10.1038/NMAT4444, 10.1038/nmat4444]
[5]  
BENSON P F, 1961, Cereb Palsy Bull, V3, P510
[6]   Healing characteristics of electrospun polyurethane grafts with various porosities [J].
Bergmeister, Helga ;
Schreiber, Catharina ;
Grasl, Christian ;
Walter, Ingrid ;
Plasenzotti, Roberto ;
Stoiber, Martin ;
Bernhard, David ;
Schima, Heinrich .
ACTA BIOMATERIALIA, 2013, 9 (04) :6032-6040
[7]   Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function [J].
Bettinger, Christopher J. ;
Langer, Robert ;
Borenstein, Jeffrey T. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (30) :5406-5415
[8]   Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range [J].
Biela, Sarah A. ;
Su, Yi ;
Spatz, Joachim P. ;
Kemkemer, Ralf .
ACTA BIOMATERIALIA, 2009, 5 (07) :2460-2466
[9]   Limitations of the hCMEC/D3 Cell Line as a Model for Aβ Clearance by the Human Blood-brain Barrier [J].
Biemans, Elisanne A. L. M. ;
Jakel, Lieke ;
de Waal, Robert M. W. ;
Kuiperij, H. Bea ;
Verbeek, Marcel M. .
JOURNAL OF NEUROSCIENCE RESEARCH, 2017, 95 (07) :1513-1522
[10]   Endothelial barrier disruption and recovery is controlled by substrate stiffness [J].
Birukova, Anna A. ;
Tian, Xinyong ;
Cokic, Ivan ;
Beckham, Yvonne ;
Gardel, Margaret L. ;
Birukov, Konstantin G. .
MICROVASCULAR RESEARCH, 2013, 87 :50-57