Infinite families of Artin-Schreier function fields with any prescribed class group rank
被引:0
|
作者:
Yoo, Jinjoo
论文数: 0引用数: 0
h-index: 0
机构:
Ulsan Natl Inst Sci & Technol, Dept Math Sci, 50 UNIST Gil, Ulsan 44919, South KoreaUlsan Natl Inst Sci & Technol, Dept Math Sci, 50 UNIST Gil, Ulsan 44919, South Korea
Yoo, Jinjoo
[1
]
论文数: 引用数:
h-index:
机构:
Lee, Yoonjin
[2
]
机构:
[1] Ulsan Natl Inst Sci & Technol, Dept Math Sci, 50 UNIST Gil, Ulsan 44919, South Korea
[2] Ewha Womans Univ, Dept Math, 52 Ewhayeodae Gil, Seoul 03760, South Korea
来源:
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES
|
2024年
/
76卷
/
05期
基金:
新加坡国家研究基金会;
关键词:
Artin-Schreier extension;
function field;
class group;
ideal class group;
Galois module;
QUADRATIC FUNCTION-FIELDS;
CYCLIC FUNCTION-FIELDS;
GENUS THEORY;
D O I:
10.4153/S0008414X23000652
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the Galois module structure of the class groups of the Artin-Schreier extensions K over k of extension degree p, where $k:={\mathbb F}_q(T)$ is the rational function field and p is a prime number. The structure of the p-part $Cl_K(p)$ of the ideal class group of K as a finite G-module is determined by the invariant ${\lambda }_n$, where $G:=\operatorname {\mathrm {Gal}}(K/k)=\langle {\sigma } \rangle $ is the Galois group of K over k, and ${\lambda }_n = \dim _{{\mathbb F}_p}(Cl_K(p)<^>{({\sigma }-1)<^>{n-1}}/Cl_K(p)<^>{({\sigma }-1)<^>{n}})$. We find infinite families of the Artin-Schreier extensions over k whose ideal class groups have guaranteed prescribed ${\lambda }_n$-rank for $1 \leq n \leq 3$. We find an algorithm for computing ${\lambda }_3$-rank of $Cl_K(p)$. Using this algorithm, for a given integer $t \ge 2$, we get infinite families of the Artin-Schreier extensions over k whose ${\lambda }_1$-rank is t, ${\lambda }_2$-rank is $t-1$, and ${\lambda }_3$-rank is $t-2$. In particular, in the case where $p=2$, for a given positive integer $t \ge 2$, we obtain an infinite family of the Artin-Schreier quadratic extensions over k whose $2$-class group rank (resp. $2<^>2$-class group rank and $2<^>3$-class group rank) is exactly t (resp. $t-1$ and $t-2$). Furthermore, we also obtain a similar result on the $2<^>n$-ranks of the divisor class groups of the Artin-Schreier quadratic extensions over k.
机构:
Ewha Womans Univ, Inst Math Sci, 52 Ewhayeodae Gil, Seoul 03760, South Korea
Ulsan Natl Inst Sci & Technol, Dept Math Sci, 50 UNIST Gil, Ulsan 44919, South KoreaEwha Womans Univ, Inst Math Sci, 52 Ewhayeodae Gil, Seoul 03760, South Korea
机构:
Kangwon Natl Univ, Dept Math Educ, Chunchen 24341, Gangwon Do, South KoreaKangwon Natl Univ, Dept Math Educ, Chunchen 24341, Gangwon Do, South Korea