mRNA Lipid Nanoparticles for Ex Vivo Engineering of Immunosuppressive T Cells for Autoimmunity Therapies

被引:16
|
作者
Thatte, Ajay S. [1 ]
Hamilton, Alex G. [1 ]
Nachod, Benjamin E. [1 ]
Mukalel, Alvin J. [1 ]
Billingsley, Margaret M. [1 ]
Palanki, Rohan [1 ]
Swingle, Kelsey L. [1 ]
Mitchell, Michael J. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Penn Inst RNA Innovat, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Inst Immunol, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Cardiovasc Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Inst Regenerat Med, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
lipid nanoparticles; mRNA delivery; T cellengineering; Foxp3; autoimmune diseases; IN-VIVO; FOXP3; ISOFORMS; DELIVERY; MECHANISMS; DISEASES; THERAPEUTICS; GENERATION; ANTIBODIES; HUMANS;
D O I
10.1021/acs.nanolett.3c02573
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell-based therapies for autoimmune diseases have gained significant traction, with several approaches centered around the regulatory T (T-reg) cell-a well-known immunosuppressive cell characterized by its expression of the transcription factor Foxp3. Unfortunately, due to low numbers of T-reg cells available in circulation, harvesting and culturing T-reg cells remains a challenge. It has been reported that engineering Foxp3 expression in CD4(+) T cells can result in a T-reg-like phenotype; however, current methods result in the inefficient engineering of these cells. Here, we develop an ionizable lipid nanoparticle (LNP) platform to effectively deliver Foxp3 mRNA to CD4(+) T cells. We successfully engineer CD4(+) T cells into Foxp3-T (FP3T) cells that transiently exhibit an immunosuppressive phenotype and functionally suppress the proliferation of effector T cells. These results demonstrate the promise of an LNP platform for engineering immunosuppressive T cells with potential applications in autoimmunity therapies.
引用
收藏
页码:10179 / 10188
页数:10
相关论文
共 50 条
  • [41] Optimizing lipid nanoparticles for fetal gene delivery in vitro, ex vivo, and aided with machine learning
    Abostait, Amr
    Abdelkarim, Mahmoud
    Bao, Zeqing
    Miyake, Yuichiro
    Tse, Wai Hei
    Di Ciano-Oliveir, Caterina
    Buerki-Thurnherr, Tina
    Allen, Christine
    Keijzer, Richard
    Labouta, Hagar I.
    JOURNAL OF CONTROLLED RELEASE, 2024, 376 : 678 - 700
  • [42] TGFβ Programs Central Memory Differentiation in Ex Vivo-Stimulated Human T Cells
    Dahmani, Amina
    Janelle, Valerie
    Carli, Cedric
    Richaud, Manon
    Lamarche, Caroline
    Khalili, Myriam
    Goupil, Mathieu
    Bezverbnaya, Ksenia
    Bramson, Jonathan L.
    Delisle, Jean-Sebastien
    CANCER IMMUNOLOGY RESEARCH, 2019, 7 (09) : 1426 - 1439
  • [43] Multivalent rituximab lipid nanoparticles as improved lymphoma therapies: indirect mechanisms of action and in vivo activity
    Popov, Jesse
    Kapanen, Anita I.
    Turner, Christopher
    Ng, Rebecca
    Tucker, Catherine
    Chiu, Gigi
    Klasa, Richard
    Bally, Marcel B.
    Chikh, Ghania
    NANOMEDICINE, 2011, 6 (09) : 1575 - 1591
  • [44] Neuroprotective Effect of Ropinirole Lipid Nanoparticles Enriched Hydrogel for Parkinson's Disease: In Vitro, Ex Vivo, Pharmacokinetic and Pharmacodynamic Evaluation
    Dudhipala, Narendar
    Gorre, Thirupathi
    PHARMACEUTICS, 2020, 12 (05)
  • [45] Effect of lipid nanoparticles containing fatty alcohols having different chain length on the ex vivo skin permeability of Econazole nitrate
    Sanna, Vanna
    Caria, Giuseppe
    Mariani, Alberto
    POWDER TECHNOLOGY, 2010, 201 (01) : 32 - 36
  • [46] Genetic engineering of transfusable platelets with mRNA-lipid nanoparticles is compatible with blood banking practices
    Strong, Colton
    Leung, Jerry
    Kang, Emma
    Badior, Katherine E.
    Robertson, Madelaine
    Pereyra, Nicolas
    Rowe, Elyn M.
    Wietrzny, Amanda
    Ma, Brenda
    Noronha, Zechariah
    Arnold, Deaglan
    Ciufolini, Marco A.
    Devine, Dana V.
    Jan, Eric
    Cullis, Pieter R.
    Kastrup, Christian J.
    BLOOD, 2024, 144 (21) : 2223 - 2236
  • [47] Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo
    Kauffman, Kevin J.
    Mir, Faryal F.
    Jhunjhunwala, Siddharth
    Kaczmarek, James C.
    Hurtado, Juan E.
    Yang, Jung H.
    Webber, Matthew J.
    Kowalski, Piotr S.
    Heartlein, Michael W.
    DeRosa, Frank
    Anderson, Daniel G.
    BIOMATERIALS, 2016, 109 : 78 - 87
  • [48] Engineering Cell-Selective ChargeAltering Lipid Nanoparticles for Efficient siRNA Delivery in Vivo
    Yang, Fengrui
    Lei, Lingling
    Wang, Xiangnan
    Hong, Jieling
    Wu, Zhenkun
    Jiang, Jian-Hui
    CCS CHEMISTRY, 2024, 6 (08): : 2054 - 2065
  • [49] Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo
    Xiong, Hu
    Liu, Shuai
    Wei, Tuo
    Cheng, Qiang
    Siegwart, Daniel J.
    JOURNAL OF CONTROLLED RELEASE, 2020, 325 (325) : 198 - 205
  • [50] Ex vivo generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer
    Dufait, Ines
    Schwarze, Julia Katharina
    Liechtenstein, Therese
    Leonard, Wim
    Jiang, Heng
    Escors, David
    De Ridder, Mark
    Breckpot, Karine
    ONCOTARGET, 2015, 6 (14) : 12369 - 12382