mRNA Lipid Nanoparticles for Ex Vivo Engineering of Immunosuppressive T Cells for Autoimmunity Therapies

被引:16
|
作者
Thatte, Ajay S. [1 ]
Hamilton, Alex G. [1 ]
Nachod, Benjamin E. [1 ]
Mukalel, Alvin J. [1 ]
Billingsley, Margaret M. [1 ]
Palanki, Rohan [1 ]
Swingle, Kelsey L. [1 ]
Mitchell, Michael J. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Penn Inst RNA Innovat, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Inst Immunol, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Cardiovasc Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Inst Regenerat Med, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
lipid nanoparticles; mRNA delivery; T cellengineering; Foxp3; autoimmune diseases; IN-VIVO; FOXP3; ISOFORMS; DELIVERY; MECHANISMS; DISEASES; THERAPEUTICS; GENERATION; ANTIBODIES; HUMANS;
D O I
10.1021/acs.nanolett.3c02573
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell-based therapies for autoimmune diseases have gained significant traction, with several approaches centered around the regulatory T (T-reg) cell-a well-known immunosuppressive cell characterized by its expression of the transcription factor Foxp3. Unfortunately, due to low numbers of T-reg cells available in circulation, harvesting and culturing T-reg cells remains a challenge. It has been reported that engineering Foxp3 expression in CD4(+) T cells can result in a T-reg-like phenotype; however, current methods result in the inefficient engineering of these cells. Here, we develop an ionizable lipid nanoparticle (LNP) platform to effectively deliver Foxp3 mRNA to CD4(+) T cells. We successfully engineer CD4(+) T cells into Foxp3-T (FP3T) cells that transiently exhibit an immunosuppressive phenotype and functionally suppress the proliferation of effector T cells. These results demonstrate the promise of an LNP platform for engineering immunosuppressive T cells with potential applications in autoimmunity therapies.
引用
收藏
页码:10179 / 10188
页数:10
相关论文
共 50 条
  • [21] Improvement of mRNA Delivery Efficiency to a T Cell Line by Modulating PEG-Lipid Content and Phospholipid Components of Lipid Nanoparticles
    Tanaka, Hiroki
    Miyama, Ryo
    Sakurai, Yu
    Tamagawa, Shinya
    Nakai, Yuta
    Tange, Kota
    Yoshioka, Hiroki
    Akita, Hidetaka
    PHARMACEUTICS, 2021, 13 (12)
  • [22] Antigen Presenting Cell Mimetic Lipid Nanoparticles for Rapid mRNA CAR T Cell Cancer Immunotherapy
    Metzloff, Ann E.
    Padilla, Marshall S.
    Gong, Ningqiang
    Billingsley, Margaret M.
    Han, Xuexiang
    Merolle, Maria
    Mai, David
    Figueroa-Espada, Christian G.
    Thatte, Ajay S.
    Haley, Rebecca M.
    Mukalel, Alvin J.
    Hamilton, Alex G.
    Alameh, Mohamad-Gabriel
    Weissman, Drew
    Sheppard, Neil C.
    June, Carl H.
    Mitchell, Michael J.
    ADVANCED MATERIALS, 2024, 36 (26)
  • [23] mRNA-Loaded Lipid Nanoparticles Targeting Dendritic Cells for Cancer Immunotherapy
    Sasaki, Kosuke
    Sato, Yusuke
    Okuda, Kento
    Iwakawa, Kazuki
    Harashima, Hideyoshi
    PHARMACEUTICS, 2022, 14 (08)
  • [24] Harnessing Topology and Stereochemistry of Glycidylamine-Derived Lipid Nanoparticles for in Vivo mRNA Delivery to Immune Cells in Spleen and Their Application for Cancer Vaccination
    Abd Elwakil, Mahmoud M.
    Suzuki, Ryota
    Khalifa, Alaa M.
    Elshami, Rania M.
    Isono, Takuya
    Elewa, Yaser H. A.
    Sato, Yusuke
    Nakamura, Takashi
    Satoh, Toshifumi
    Harashima, Hideyoshi
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (45)
  • [25] Branched-Tail Lipid Nanoparticles for Intravenous mRNA Delivery to Lung Immune, Endothelial, and Alveolar Cells in Mice
    Petersen, Daria M. Strelkova
    Weiss, Ryan M.
    Hajj, Khalid A.
    Yerneni, Saigopalakrishna S.
    Chaudhary, Namit
    Newby, Alexandra N.
    Arral, Mariah L.
    Whitehead, Kathryn A.
    ADVANCED HEALTHCARE MATERIALS, 2024, 13 (22)
  • [26] PEG-OligoRNA Hybridization of mRNA for Developing Sterically Stable Lipid Nanoparticles toward In Vivo Administration
    Kurimoto, Shota
    Yoshinaga, Naoto
    Igarashi, Kazunori
    Matsumoto, Yu
    Cabral, Horacio
    Uchida, Satoshi
    MOLECULES, 2019, 24 (07)
  • [27] Lipid Nanoparticles Deliver the Therapeutic VEGFA mRNA In Vitro and In Vivo and Transform Extracellular Vesicles for Their Functional Extensions
    Nawaz, Muhammad
    Heydarkhan-Hagvall, Sepideh
    Tangruksa, Benyapa
    Garibotti, Hernan Gonzalez-King
    Jing, Yujia
    Maugeri, Marco
    Kohl, Franziska
    Hultin, Leif
    Reyahi, Azadeh
    Camponeschi, Alessandro
    Kull, Bengt
    Christoffersson, Jonas
    Grimsholm, Ola
    Jennbacken, Karin
    Sundqvist, Martina
    Wiseman, John
    Bidar, Abdel Wahad
    Lindfors, Lennart
    Synnergren, Jane
    Valadi, Hadi
    ADVANCED SCIENCE, 2023, 10 (12)
  • [28] Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening
    Guimaraes, Pedro P. G.
    Zhang, Rui
    Spektor, Roman
    Tan, Mingchee
    Chung, Amanda
    Billingsley, Margaret M.
    El-Mayta, Rakan
    Riley, Rachel S.
    Wang, Lili
    Wilson, James M.
    Mitchell, Michael J.
    JOURNAL OF CONTROLLED RELEASE, 2019, 316 : 404 - 417
  • [29] IL7 increases targeted lipid nanoparticle-mediated mRNA expression in T cells in vitro and in vivo by enhancing T cell protein translation
    Tilsed, Caitlin M.
    Sadiq, Barzan A.
    Papp, Tyler E.
    Areesawangkit, Phurin
    Kimura, Kenji
    Noguera-Ortega, Estela
    Scholler, John
    Cerda, Nicholas
    Aghajanian, Haig
    Bot, Adrian
    Mui, Barbara
    Tam, Ying
    Weissman, Drew
    June, Carl H.
    Albelda, Steven M.
    Parhiz, Hamideh
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (13)
  • [30] Lipid-mediated ex vivo cell surface engineering for augmented cellular functionalities
    Kim, Sungjun
    Kim, Kyobum
    BIOMATERIALS ADVANCES, 2022, 140