Symplectic Forms and the Yang-Baxter Equation in Jacobi-Jordan algebras

被引:0
|
作者
Assiry, Abdallah [1 ]
机构
[1] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, Mecca, Saudi Arabia
关键词
Dual mock-Lie algebra; symplectic forms; Yang-Baxter equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper's primary objective is to expand the connection be-tween the presence of a symplectic form on a Mock-Lie algebra and the solution of the Yang-Baxter equation (YBE) into the realm of sym-plectic Jacobi-Jordan algebras. The study establishes an equivalence between the existence of an even symplectic form omega on a Mock-Lie algebra and the existence of an r-matrix of J, which is a solution r of the YBE.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 50 条
  • [21] ALGEBRAS CONNECTED WITH THE ZN ELLIPTIC SOLUTION OF THE YANG-BAXTER EQUATION
    HOU, BY
    WEI, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (12) : 2750 - 2755
  • [22] Yang-Baxter algebras, convolution algebras, and Grassmannians
    Gorbunov, V. G.
    Korff, C.
    Stroppel, C.
    RUSSIAN MATHEMATICAL SURVEYS, 2020, 75 (05) : 791 - 842
  • [23] THE YANG-BAXTER AND PENTAGON EQUATION
    VANDAELE, A
    VANKEER, S
    COMPOSITIO MATHEMATICA, 1994, 91 (02) : 201 - 221
  • [24] INTRODUCTION TO THE YANG-BAXTER EQUATION
    JIMBO, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (15): : 3759 - 3777
  • [25] Braces and the Yang-Baxter Equation
    Cedo, Ferran
    Jespers, Eric
    Okninski, Jan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 101 - 116
  • [26] GENERALIZED YANG-BAXTER EQUATION
    KASHAEV, RM
    STROGANOV, YG
    MODERN PHYSICS LETTERS A, 1993, 8 (24) : 2299 - 2309
  • [27] OPERATOR FORMS OF THE CLASSICAL YANG-BAXTER EQUATION IN LIE SUPERALGEBRAS
    Wang, Yan
    Hou, Dongping
    Bai, Chengming
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (04) : 583 - 597
  • [28] ON THE(COLORED)YANG-BAXTER EQUATION
    Hobby, David
    Iantovics, Barna Laszlo
    Nichita, Florin F.
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2010, 1 : 33 - 39
  • [29] Some remarks on Yang-Baxter algebras
    Truong, TT
    EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03): : 697 - 703
  • [30] Yang-Baxter relations with orthogonal or symplectic symmetry
    Karakhanyan, D.
    Kirschner, R.
    XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670