Symplectic Forms and the Yang-Baxter Equation in Jacobi-Jordan algebras

被引:0
|
作者
Assiry, Abdallah [1 ]
机构
[1] Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, Mecca, Saudi Arabia
关键词
Dual mock-Lie algebra; symplectic forms; Yang-Baxter equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper's primary objective is to expand the connection be-tween the presence of a symplectic form on a Mock-Lie algebra and the solution of the Yang-Baxter equation (YBE) into the realm of sym-plectic Jacobi-Jordan algebras. The study establishes an equivalence between the existence of an even symplectic form omega on a Mock-Lie algebra and the existence of an r-matrix of J, which is a solution r of the YBE.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 50 条
  • [1] Symplectic Jacobi-Jordan algebras
    Baklouti, Amir
    Benayadi, Said
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (08): : 1557 - 1578
  • [2] Yang-Baxter equation in median algebras
    Oner, Tahsin
    Katican, Tugce
    Saeid, Arsham Borumand
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 79 - 95
  • [3] Jacobi-Jordan algebras
    Burde, Dietrich
    Fialowski, Alice
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 586 - 594
  • [4] On Frobenius algebras and the quantum Yang-Baxter equation
    Beidar, KI
    Fong, Y
    Stolin, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (09) : 3823 - 3836
  • [5] Cosymplectic Jacobi-Jordan algebras
    El Bourkadi, Said
    Wadia Mansouri, Mohammed
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [6] On Generalizations of Jacobi-Jordan Algebras
    Abdelwahab, Hani
    Abdo, Naglaa Fathi
    Barreiro, Elisabete
    Sanchez, Jose Maria
    AXIOMS, 2024, 13 (11)
  • [7] Classical Yang-Baxter equation for vertex operator algebras and its operator forms
    Bai, Chengming
    Guo, Li
    Liu, Jianqi
    JOURNAL OF ALGEBRA, 2025, 671 : 117 - 158
  • [8] Solutions of Yang Baxter equation of symplectic Jordan superalgebras
    Amir Baklouti
    Warda Bensalah
    Khaled Al-Motairi
    Advances in Computational Intelligence, 2022, 2 (1):
  • [9] HOPF-ALGEBRAS AND QUANTUM YANG-BAXTER EQUATION
    DRINFELD, VG
    DOKLADY AKADEMII NAUK SSSR, 1985, 283 (05): : 1060 - 1064
  • [10] TRACE AND DETERMINANT IN ALGEBRAS ASSOCIATED WITH THE YANG-BAXTER EQUATION
    GUREVICH, DI
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1987, 21 (03) : 239 - 240