FSPA: An FeFET-based Sparse Matrix-Dense Vector Multiplication Accelerator

被引:3
作者
Zhang, Xiaoyu [1 ,2 ]
Li, Zerun [1 ,2 ]
Liu, Rui [1 ,3 ]
Chen, Xiaoming [1 ]
Han, Yinhe [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
[3] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan, Peoples R China
来源
2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC | 2023年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Sparse matrix multiplication; ferroelectric field-effect transistor; in-memory computing;
D O I
10.1109/DAC56929.2023.10247895
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse matrix-dense vector multiplication (SpMV) is widely used in various applications. The performance of traditional SpMV accelerators is bounded by memory. In-memory computing (IMC) is a promising technique to alleviate the memory bottleneck. The current IMC accelerator cannot support sparse storage format and in-situ floating-point multiplication at the same time. In this paper, we propose FSPA, an ferroelectric field-effect transistor (FeFET) based SpMV accelerator. FSPA integrates novel content-addressable memory (CAM) arrays and multiply-add computation (MAC) arrays to support sparse matrices represented in the floating-point format. FSPA achieves significant speedups and energy savings over CPU, GPU and two state-of-the-art IMC accelerators.
引用
收藏
页数:6
相关论文
共 21 条
  • [1] Fast Sparse Matrix-Vector Multiplication on GPUs for Graph Applications
    Ashari, Arash
    Sedaghati, Naser
    Eisenlohr, John
    Parthasarathy, Srinivasan
    Sadayappan, P.
    [J]. SC14: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2014, : 781 - 792
  • [2] ASU, 2011, Predictive technology model
  • [3] Choo KD, 2016, ISSCC DIG TECH PAP I, V59, P460, DOI 10.1109/ISSCC.2016.7418106
  • [4] The University of Florida Sparse Matrix Collection
    Davis, Timothy A.
    Hu, Yifan
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01):
  • [5] Enabling Scientific Computing on Memristive Accelerators
    Feinberg, Ben
    Vengalam, Uday Kumar Reddy
    Whitehair, Nathan
    Wang, Shibo
    Ipek, Engin
    [J]. 2018 ACM/IEEE 45TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2018, : 367 - 382
  • [6] Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters
    Leskovec, Jure
    Lang, Kevin J.
    Dasgupta, Anirban
    Mahoney, Michael W.
    [J]. INTERNET MATHEMATICS, 2009, 6 (01) : 29 - 123
  • [7] GPU-accelerated preconditioned iterative linear solvers
    Li, Ruipeng
    Saad, Yousef
    [J]. JOURNAL OF SUPERCOMPUTING, 2013, 63 (02) : 443 - 466
  • [8] A Ferroelectric FET-Based Processing-in-Memory Architecture for DNN Acceleration
    Long, Yun
    Kim, Daehyun
    Lee, Edward
    Saha, Priyabrata
    Mudassar, Burhan Ahmad
    She, Xueyuan
    Khan, Asif Islam
    Mukhopadhyay, Saibal
    [J]. IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2019, 5 (02): : 113 - 122
  • [9] Matam Kiran., 2012, High Performance Computing (HiPC), 2012 19th International Conference on, P1, DOI [10.1109/HiPC.2012.6507483, DOI 10.1109/HIPC.2012.6507483]
  • [10] Ni K, 2018, 2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, P131, DOI 10.1109/VLSIT.2018.8510622