Boosting lithium storage performance of Co-Sn double hydroxide nanocubes in-situ grown in mesoporous hollow carbon nanospheres

被引:12
作者
Wang, J. F. [1 ]
Yuan, Y. F. [1 ,3 ]
Lin, Z. C. [2 ]
Lin, J. J. [2 ]
Li, S. B. [2 ]
Huang, Y. Z. [3 ]
Guo, S. Y. [1 ]
Yan, W. W. [4 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Machinery Engn, Hangzhou 310018, Peoples R China
[2] Longquan Zhongtai Automot Air Conditioning Co LTD, Longquan 323000, Peoples R China
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[4] China Jiliang Univ, Coll Metrol & Measurement Engn, Hangzhou 310018, Peoples R China
关键词
Lithium-ion batteries; Mesoporous hollow carbon nanospheres; Anode; CoSn(OH)(6); ANODE MATERIALS; NANOCOMPOSITE; NANOFIBERS; TEMPLATE; CATHODE;
D O I
10.1016/j.electacta.2023.142971
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Herein, facile in-situ synthesis of double hydroxide CoSn(OH)(6) nanocubes within mesoporous hollow carbon nanospheres (MHCSs) has been successfully developed through solution impregnation and solid-phase molten reaction, using MHCSs as nanoreactors. Several CoSn(OH)(6) nanocubes with side length of 50 similar to 80 nm are encapsulated in every MHCS with a diameter of 300-400 nm. When CoSn(OH)(6)@MHCS is evaluated as an anode material for lithium-ion batteries, it achieves exceptional rate capability (1684 and 626 mAh g(-1) at 0.1 and 10 A g(-1)) and excellent cycle performance (1512 mAh g(-1) at 0.2 A g(-1) after 140 cycles, 1023 mAh g(-1) at 1 A g(-1) after 400 cycles, 512 mAh g(-1) at 5 A g(-1) after 500 cycles). The outstanding electrochemical performance is mainly attributed to the unique "ship-in-a-bottle" encapsulation structure. The mesoporous carbon shells of MHCSs facilitate electrolyte penetration and electron transfer. The large inner cavity of MHCSs promotes full contact between CoSn(OH)(6) with electrolyte, and accommodates free expansion/contraction of CoSn(OH)(6). The semienclosed carbon shell prevents the detachment and aggregation of the inner CoSn(OH)(6). These structure merits can remarkably enhance reaction kinetics and structure stability of CoSn(OH)(6). The stable and highcapacity output of the full cell demonstrates the great potential of CoSn(OH)(6)@MHCS in practical applications.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Bifunctional CoSn(OH)6/MnO2 composite for solid-state asymmetric high power density supercapacitor and for an enhanced OER [J].
Aruchamy G. ;
Thangavelu S. .
Electrochimica Acta, 2020, 344
[2]   Nitrogen doped siloxene and composite with graphene for high performance fiber-based supercapacitors [J].
Bai, Bing ;
Qiu, Linlin ;
Yuan, Yongfeng ;
Song, Lixin ;
Xiong, Jie ;
Du, Pingfan .
JOURNAL OF ENERGY STORAGE, 2023, 63
[3]   Rational construction of metal-organic framework derived dual-phase doping N-TiO2 plus S-carbon yolk-shell nanodisks for high-performance lithium ion batteries [J].
Cai, Chen ;
Yao, Zhujun ;
Xiang, Jiayuan ;
Chang, Xinhao ;
Yao, Weilin ;
He, Linxuan ;
Ruan, Lingfeng ;
Chen, Zihang ;
Shi, Juntao ;
Liu, Tiancun ;
Shen, Shenghui ;
Xie, Haijiao ;
Yang, Yefeng .
ELECTROCHIMICA ACTA, 2023, 452
[4]   Preparation of CoSnO3/CNTs/S and its Electrochemical Performance as Cathode Material for Lithium-Sulfur Batteries [J].
Chen, Jiale ;
Bian, Zhengxu ;
Wu, Mengrong ;
Gao, Mingyue ;
Shi, Jing ;
Duan, Mengting ;
Guo, Xingmei ;
Liu, Yuanjun ;
Zhang, Junhao ;
Kong, Qinghong .
CHEMELECTROCHEM, 2020, 7 (20) :4209-4217
[5]   Integrated Design of Hierarchical CoSnO3@NC@MnO@NC Nanobox as Anode Material for Enhanced Lithium Storage Performance [J].
Chen, Zhiwen ;
Fei, Siming ;
Wu, Chenghao ;
Xin, Peijun ;
Huang, Shoushuang ;
Selegard, Linnea ;
Uvdal, Kajsa ;
Hu, Zhangjun .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (17) :19768-19777
[6]   Recent research of core?shell structured composites with NiCo 2 O 4 as scaffolds for electrochemical capacitors [J].
Cheng, J. P. ;
Wang, W. D. ;
Wang, X. C. ;
Liu, F. .
CHEMICAL ENGINEERING JOURNAL, 2020, 393
[7]   Synthesis and electrochemical performances of ZnO/MnO2 sea urchin-like sleeve array as anode materials for lithium-ion batteries [J].
Fang, J. ;
Yuan, Y. F. ;
Wang, L. K. ;
Ni, H. L. ;
Zhu, H. L. ;
Yang, J. L. ;
Gui, J. S. ;
Chen, Y. B. ;
Guo, S. Y. .
ELECTROCHIMICA ACTA, 2013, 112 :364-370
[8]   Lithium-ion transfer strengthened by graphite tailings and coking coal for high-rate performance anode [J].
Fu, Yulong ;
Jin, Yuqing ;
Ma, Jing ;
Liu, Junhao ;
Wang, Zhi ;
Wang, Bin ;
Gong, Xuzhong .
CHEMICAL ENGINEERING JOURNAL, 2022, 442
[9]   ZnO/C nanocomposite microspheres with capsule structure for anode materials of lithium ion batteries [J].
Guo, Renqing ;
Huang, Xiaohua ;
Wu, Jianbo ;
Zhong, Wenwu ;
Lin, Yan ;
Cao, Yiqi .
CERAMICS INTERNATIONAL, 2020, 46 (12) :19966-19972
[10]   Ultrathin CoOOH/Co(OH)2 hybrid nanosheets for high-performance anodes of lithium-ion batteries [J].
Hu, Jinlong ;
Song, Jian ;
Lan, Donghui ;
Tian, Qinghua .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 935