Numerical simulation of the transition of a Newtonian fluid to a viscoplastic state in a turbulent flow

被引:4
作者
Pakhomov, Maksim A. [1 ,2 ]
Zhapbasbayev, Uzak K. [2 ]
Bossinov, Daniyar Zh. [2 ]
机构
[1] Russian Acad Sci, Kutateladze Inst Thermophys, Siberian Branch, Lavrentev Ave, 1, Novosibirsk 630090, Russia
[2] Satbayev Univ, Satpaev str, 22a, Alma Ata 050013, Kazakhstan
关键词
High-viscosity oil; Non-isothermal flow; Bingham-Schwedoff model; Turbulence; Heat transfer; Reynolds stress model; YIELD-STRESS; HEAT-TRANSFER; PIPE-FLOW; MODEL;
D O I
10.1016/j.jksus.2022.102522
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The non-isothermal turbulent flow and transition to a viscoplastic state of high-viscosity oil with physical and chemical properties depending on fluid temperature is numerically studied. The turbulence of fluid flow in a pipe is described using the Reynolds stress, Reynolds algebraic stress, and two-parameter isotropic models. The simulations show the boundaries of the region of the manifestation of Newtonian behavior and fluid transition to a viscoplastic state. The Reynolds stress model and the algebraic Reynolds stress model show significant anisotropy in the velocity fluctuation profiles of Newtonian and non-Newtonian fluids. The shift of the locus of maximal magnitudes of turbulent pulsations, Reynolds stress, and turbulent kinetic energy towards a flow core region is observed. The height of the zone with a completely stopped fluid is predicted and determined numerically. The appearance of a stagnation zone near the wall causes a significant decrease in wall friction and heat transfer due to a decrease in the environment temperature. & COPY; 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:7
相关论文
共 39 条
[1]   Wax formation in oil pipelines: A critical review [J].
Aiyejina, Ararimeh ;
Chakrabarti, Dhurjati Prasad ;
Pilgrim, Angelus ;
Sastry, M. K. S. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2011, 37 (07) :671-694
[2]  
Aljerf L., 2016, Sci. J. King Faisal Univ., V17, P1
[3]  
Aljerf L, 2018, Journal of Energy Conservation, V1, P31, DOI [10.14302/issn.2642-3146.jec-18-2232, 10.14302/issn.2642-3146.jec-18-2232, DOI 10.14302/ISSN.2642-3146.JEC-18-2232]
[4]   Phenomenological friction equation for turbulent flow of Bingham fluids [J].
Anbarlooei, H. R. ;
Cruz, D. O. A. ;
Ramos, F. ;
Santos, Cecilia M. M. ;
Silva Freire, A. P. .
PHYSICAL REVIEW E, 2017, 96 (02)
[5]   The yield stress -: a review or 'παντα ρει' -: everything flows? [J].
Barnes, HA .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1999, 81 (1-2) :133-178
[6]   Simulation of oil pipeline shutdown and restart modes [J].
Bekibayev, T. T. ;
Zhapbasbayev, U. K. ;
Ramazanova, G., I ;
Minghat, A. D. ;
Bosinov, D. Zh .
KOMPLEKSNOE ISPOLZOVANIE MINERALNOGO SYRA, 2021, (01) :15-23
[7]   Optimal regimes of heavy oil transportation through a heated pipeline [J].
Bekibayev, Timur ;
Zhapbasbayev, Uzak ;
Ramazanova, Gaukhar .
JOURNAL OF PROCESS CONTROL, 2022, 115 :27-35
[8]   NUMERICAL-ANALYSIS OF 3-DIMENSIONAL BINGHAM PLASTIC-FLOW [J].
BEVERLY, CR ;
TANNER, RI .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1992, 42 (1-2) :85-115
[9]  
Bingham E.G., 1922, FLUIDITY PLASTICITY
[10]  
Chhabra R.P., 2008, NONNEWTONIAN FLOW AP, DOI [10.1016/B978-0-7506-8532-0.X0001-7, DOI 10.1016/B978-0-7506-8532-0.X0001-7]