Biorenewable and circular polydiketoenamine plastics

被引:20
|
作者
Demarteau, Jeremy [1 ]
Cousineau, Benjamin [1 ]
Wang, Zilong [2 ,3 ,4 ,5 ,6 ]
Bose, Baishakhi [6 ]
Cheong, Seokjung [2 ,3 ,4 ,5 ,6 ]
Lan, Guangxu [2 ,6 ]
Baral, Nawa R. [2 ,6 ]
Teat, Simon J. [7 ]
Scown, Corinne D. [2 ,6 ,8 ,9 ]
Keasling, Jay D. [2 ,3 ,4 ,5 ,6 ,10 ,11 ]
Helms, Brett A. [1 ,2 ,12 ]
机构
[1] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Joint BioEnergy Inst, Emeryville, CA 94608 USA
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA USA
[4] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA USA
[5] Univ Calif Berkeley, Inst QB3, Berkeley, CA USA
[6] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA USA
[7] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[8] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA USA
[9] Univ Calif Berkeley, Energy & Biosci Inst, Berkeley, CA USA
[10] Shenzhen Inst Adv Technol, Ctr Synthet Biochem, Shenzhen, Peoples R China
[11] Tech Univ Denmark, Novo Nord Fdn Ctr Biosustainabil, Lyngby, Denmark
[12] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
基金
美国能源部; 美国国家科学基金会;
关键词
Compendex;
D O I
10.1038/s41893-023-01160-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A circular economy for plastics offers a promising solution to the pollution crisis. Here the authors take advantage of the unique chemistry of polydiketoenamine resins, showing how plastics can be biorenewable and recyclable by incorporating biosourced triacetic acid lactone. Amid growing concerns over the human health and environmental impacts of plastic waste, the most promising solution would be to build a circular plastics economy where sustainability considerations dictate the full life cycle of plastics use including replacing petrochemicals with biorenewables. Here we show that by incorporating the polyketide triacetic acid lactone (TAL) in polydiketoenamines (PDK) we increase the working temperature of these circular plastics, opening the door wider to applications where circularity is urgently needed. By varying the number of carbons of TAL-derived monomers, both polymer properties and recycling efficiency are affected. Simply using glucose as the main carbon source, we engineered a process for producing bioTAL under fed-batch fermentation. A systems analysis of this bioprocess under different scenarios quantifies the environmental and economic benefits of PDK plastics and the risks when implemented at an industrial scale, providing opportunities in biorenewable circularity.
引用
收藏
页码:1426 / 1435
页数:12
相关论文
共 50 条