Self-assembled ZnIn2S4/SnS2 QDs S-scheme heterojunction for boosted photocatalytic hydrogen evolution: Energy band engineering and mechanism

被引:36
|
作者
Zhang, Chengming [1 ]
Ma, Jun [1 ]
Zhu, Haibao [1 ]
Ding, Huihui [1 ]
Wu, Huanhuan [1 ]
Zhang, Kehua [1 ]
Zhao, XiaoLi [2 ]
Wang, Xiufang [1 ]
Cheng, Congliang [1 ]
机构
[1] Anhui Jianzhu Univ, Anhui Prov Engn Lab Adv Bldg Mat, Hefei 230601, Anhui, Peoples R China
[2] Chinese Res Acad Environm Sci Beijing China, State Key Lab Environm Criteria & Risk Assessment, Beijing 100085, Peoples R China
基金
中国国家自然科学基金;
关键词
SnS2 quantum dots; S-scheme heterojunction; Energy band matching; Density function theory;
D O I
10.1016/j.jallcom.2023.170932
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rapid and efficient transfer and separation of photo-induced carriers are critical for designing en-vironmentally friendly and efficient photocatalysts in catalytic hydrogen evolution. Here, we design a 0D/2D S-scheme heterojunction involving ZnIn2S4 (ZIS) nanosheets self-assembled with SnS2 quantum dots (QDs). The formation of the S-scheme ZIS/SnS2 QDs heterojunction is demonstrated by experimental character-istics and density functional theory (DFT) analyzes, which greatly promotes charge transfer and transport under the interfacial electric field (IEF), lengthens carrier lifetime, enhances light-harvesting properties, and significantly decreases the Gibbs free energy during the catalysis reaction. Therefore, the optimized ZIS/SnS2 photocatalyst achieves a high hydrogen production rate of 1.13 mmol g-1h-1, which is 16.14 folds the one of pure ZIS. This study provides novel perspectives into the reasonable design of S-scheme photocatalyst by virtue of the theories of energy band engineering and IEF adjustment. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Photocatalytic self-Fenton degradation of ciprofloxacin over S-scheme CuFe2O4/ZnIn2S4 heterojunction: Mechanism insight, degradation pathways and DFT calculations
    Liu, Dongdong
    Jiang, Lipeng
    Chen, Dengqian
    Hao, Zhengkai
    Deng, Bowen
    Sun, Yunyun
    Liu, Xin
    Jia, Boyin
    Chen, Limei
    Liu, Huitao
    CHEMICAL ENGINEERING JOURNAL, 2024, 482
  • [42] Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance
    Li, Lingling
    Ma, Dekun
    Xu, Quanlong
    Huang, Shaoming
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [43] A Z-scheme Pd modified ZnIn2S4/P25 heterojunction for enhanced photocatalytic hydrogen evolution
    Xie, Ziyu
    Chen, Jing
    Chen, Yanxin
    Wang, Tianming
    Jiang, Xia
    Xie, Yiming
    Lu, Can-Zhong
    APPLIED SURFACE SCIENCE, 2022, 579
  • [44] Synergistic adsorption-photocatalytic degradation of tetracycline by S-scheme InVO4/ZnIn2S4 heterojunction: mechanism, toxicity assessment, and potential applications
    Sun, Liying
    He, Xuesong
    Liu, Bin
    Zhang, Shuming
    Xiang, Zheng
    Wang, Xin
    Wang, Yang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 353
  • [45] Solvothermal fabrication of MoS2 anchored on ZnIn2S4 microspheres with boosted photocatalytic hydrogen evolution activity
    Liu, Chun
    Chai, Bo
    Wang, Chunlei
    Yan, Juntao
    Ren, Zhandong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (14) : 6977 - 6986
  • [46] Bi2MoO6/ZnIn2S4 S-scheme heterojunction containing oxygen vacancies for photocatalytic degradation of organic pollutant
    Wang, Dandan
    Lin, Zhaoxin
    Yang, Weiting
    Li, Hongji
    Su, Zhongmin
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1321
  • [47] Boosted photocatalytic performance of hydrogen evolution and formaldehyde degradation with a S-scheme PMo12/MgIn2S4 heterojunction
    Rong, Ao
    Shi, Hongfei
    Zhao, Qi
    Zhu, Hongwei
    Wang, Haoshen
    Yan, Gang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 348
  • [48] Construction of strongly coupled 2D-2D SnS2/CdS S-scheme heterostructures for photocatalytic hydrogen evolution
    Chen, Xiaoyu
    Han, Zhi
    Lu, Zonghao
    Qu, Tingting
    Liang, Ce
    Wang, Yu
    Zhang, Bin
    Han, Xijiang
    Xu, Ping
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (05) : 1311 - 1321
  • [49] ZnIn2S4-based S-scheme heterojunction photocatalyst
    Wu, Xinhe
    Chen, Guoqiang
    Li, Liangting
    Wang, Juan
    Wang, Guohong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 167 (184-204): : 184 - 204
  • [50] Photothermal-Enhanced S-Scheme Heterojunction of Hollow Core-Shell FeNi2S4@ZnIn2S4 toward Photocatalytic Hydrogen Evolution
    Wang, Shikai
    Zhang, Dong
    Pu, Xipeng
    Zhang, Lizhi
    Zhang, Dafeng
    Jiang, Jizhou
    SMALL, 2024, 20 (30)