Existence of C1,α singular solutions to Euler-Nernst-Planck-Poisson system on R3 with free-moving charges

被引:0
作者
Qiu, Yiya [1 ]
Zhao, Lifeng [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
Euler-Nernst-Planck-Poisson system; Singularity formation; GLOBAL WEAK SOLUTIONS; BLOW-UP; WELL-POSEDNESS; SIMULATION; ACTUATORS; DIFFUSION; STABILITY; EQUATIONS; FLUID; SPACE;
D O I
10.1016/j.na.2023.113227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a special C1,& alpha; blow up solution to the three dimensional system modeling electro-hydrodynamics, which is strongly coupled with incompressible Euler equation and Nernst-Planck-Poisson equation. Our construction lies on the framework established in Elgindi et al. (2021) and relies on a special solution to variant spherical Laplacian.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 27 条
[1]  
[Anonymous], 2004, Lithium-ion batteries: Solid-electrolyte interphase
[2]   Induced-charge electrokinetic phenomena: Theory and microfluidic applications [J].
Bazant, MZ ;
Squires, TM .
PHYSICAL REVIEW LETTERS, 2004, 92 (06) :661011-661014
[3]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[4]   GLOBAL WELL-POSEDNESS AND STABILITY OF ELECTROKINETIC FLOWS [J].
Bothe, Dieter ;
Fischer, Andre ;
Saal, Juergen .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1263-1316
[5]  
Buckmaster T, 2020, Arxiv, DOI arXiv:1912.04429
[6]   Electrochemical thin films at and above the classical limiting current [J].
Chu, KT ;
Bazant, MZ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1485-1505
[7]   Singularities and unsteady separation for the inviscid two-dimensional Prandtl system [J].
Collot, Charles ;
Ghoul, Tej-Eddine ;
Masmoudi, Nader .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (03) :1349-1430
[8]   On the Nernst-Planck-Navier-Stokes system [J].
Constantin, Peter ;
Ignatova, Mihaela .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (03) :1379-1428
[9]   Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices [J].
Deng, Chao ;
Zhao, Jihong ;
Cui, Shangbin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) :392-405
[10]  
Elgindi TM, 2021, CAMB J MATH, V9, P1035