Adsorption kinetics and dilatational rheology of plant protein concentrates at the air- and oil-water interfaces

被引:31
|
作者
Kontogiorgos, Vassilis [1 ]
Prakash, Sangeeta [1 ]
机构
[1] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld 4072, Australia
关键词
Plant protein; Lissajous; Dilatational; Rheology; Terpene; Kinetics; EMULSIFYING PROPERTIES; LIQUID INTERFACES; ISOELECTRIC PRECIPITATION; OIL/WATER INTERFACE; BETA-LACTOGLOBULIN; LAYERS; SOY; PEA; EMULSIONS; SURFACTANTS;
D O I
10.1016/j.foodhyd.2023.108486
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Adsorption kinetics and dilatational rheology of plant protein concentrates at the air- and oil-water interfaces were investigated at pH 7.0 in 100 mM NaCl. Three interfaces (air-water, triglyceride-water and terpene-water) and four protein concentrates (soy, pea, mung bean and rice) were examined. The dynamic interfacial properties were monitored by axisymmetric drop shape analysis. Kinetic modelling of the early and advanced stages of protein adsorption was carried out using the Ward-Tordai and Graham-Philips thermodynamic approaches. Construction of surface pressure master curves revealed a pseudo equilibrium plateau for legume proteins of similar to 20, 12, and 22 mN/m at the air, triglyceride and terpene interfaces, respectively. In contrast, rice proteins have a lower capacity to increase the surface pressure at the oil interfaces (<15 mN/m). Data modelling revealed that diffusion is mostly independent of the protein composition, but protein rearrangement at the interfaces was faster at the oil than at the air interfaces. Dilatational rheological measurements revealed more elastic films at the air than at oil interfaces, with the dilatational storage modulus reaching values up to 37 mN/m. The least elastic films were formed at the terpene interfaces, with storage moduli being <25 mN/m for all isolates investigated. Lissajous plot construction revealed a strain-hardening behaviour of films upon compression and strain-softening on extension, the magnitude of which follows the order air > terpene > triglyceride. Overall, results show that botanical source and subphase composition are critical in selecting the optimum stabilisation strategy in multiphasic foods using plant proteins.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Behavior of plant-dairy protein blends at air-water and oil-water interfaces
    Hinderink, Emma B. A.
    Sagis, Leonard
    Schroen, Karin
    Berton-Carabin, Claire C.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2020, 192
  • [12] Effect of Demulsifiers on Dilatational Properties of Crude Oil-Water Interfaces
    Feng, Jie
    Fang, Hong-Bo
    Zong, Hua
    Zhang, Lei
    Liu, Xue-Peng
    Zhang, Lu
    Zhao, Sui
    Yu, Jia-Yong
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2012, 33 (1-3) : 24 - 31
  • [13] A new methodology for studying protein adsorption at oil-water interfaces
    Sengupta, T
    Damodaran, S
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1998, 206 (02) : 407 - 415
  • [14] Adsorption and Desorption of Bile Salts at Air-Water and Oil-Water Interfaces
    del Castillo-Santaella, Teresa
    Maldonado-Valderrama, Julia
    COLLOIDS AND INTERFACES, 2023, 7 (02)
  • [15] Spontaneous Adsorption of Graphene Oxide to Oil-Water and Air-Water Interfaces by Adsorption of Hydrotropes
    Turpin, Geosmin A.
    Holt, Stephen A.
    Scofield, Joel M. P.
    Teo, Boon M.
    Tabor, Rico F.
    ADVANCED MATERIALS INTERFACES, 2020, 7 (09):
  • [16] Dynamic adsorption and interfacial rheology of whey protein isolate at oil-water interfaces: Effects of protein concentration, pH and heat treatment
    Zhou, Beibei
    Tobin, John T.
    Drusch, Stephan
    Hogan, Sean A.
    FOOD HYDROCOLLOIDS, 2021, 116
  • [17] ADSORPTION OF POLAR ORGANIC-MOLECULES AT OIL-WATER AND AIR-WATER INTERFACES
    AVEYARD, R
    CHAPMAN, J
    CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1975, 53 (06): : 916 - 925
  • [18] Role of dispersion interactions in the adsorption of proteins at oil-water and air-water interfaces
    Sengupta, T
    Damodaran, S
    LANGMUIR, 1998, 14 (22) : 6457 - 6469
  • [19] ADSORPTION-KINETICS OF EMULSIFIERS AT OIL-WATER INTERFACES AND THEIR EFFECT ON MECHANICAL EMULSIFICATION
    STANG, M
    KARBSTEIN, H
    SCHUBERT, H
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 1994, 33 (05) : 307 - 311
  • [20] Ovalbumin at oil-water interfaces: Adsorption and emulsification
    Panjwani, Bhawna
    Gupta, Sharad
    Thareja, Prachi
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2018, 39 (08) : 1126 - 1133