Genome-Wide Analysis of the Expansin Gene Family in Populus and Characterization of Expression Changes in Response to Phytohormone (Abscisic Acid) and Abiotic (Low-Temperature) Stresses

被引:13
|
作者
Yin, Zhihui [1 ]
Zhou, Fangwei [1 ]
Chen, Yingnan [1 ]
Wu, Huaitong [1 ]
Yin, Tongming [1 ]
机构
[1] Nanjing Forestry Univ, Coll Forestry, Southern Modern Forestry Collaborat Innovat Ctr, Key Lab Tree Breeding & Germplasm Improvement, Nanjing 210037, Peoples R China
关键词
expansins; Populus; phytohormone stress; abiotic stress; gene expression; AFFECTS GROWTH; ROOT; IDENTIFICATION; ARABIDOPSIS; AUXIN; ELONGATION; DELTOIDES; PCR;
D O I
10.3390/ijms24097759
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Expansins are a group of cell wall enzyme proteins that help to loosen cell walls by breaking hydrogen bonds between cellulose microfibrils and hemicellulose. Expansins are essential plant proteins that are involved in several key processes, including seed germination, the growth of pollen tubes and root hairs, fruit ripening and abscission processes. Currently, there is a lack of knowledge concerning the role of expansins in woody plants. In this study, we analyzed expansin genes using Populus genome as the study target. Thirty-six members of the expansin gene family were identified in Populus that were divided into four subfamilies (EXPA, EXPB, EXLA and EXLB). We analyzed the molecular structure, chromosome localization, evolutionary relationships and tissue specificity of these genes and investigated expression changes in responses to phytohormone and abiotic stresses of the expansin genes of Populus tremula L. (PtEXs). Molecular structure analysis revealed that each PtEX protein had several conserved motifs and all of the PtEXs genes had multiple exons. Chromosome structure analysis showed that the expansin gene family is distributed on 14 chromosomes. The PtEXs gene family expansion patterns showed segmental duplication. Transcriptome data of Populus revealed that 36 PtEXs genes were differently expressed in different tissues. Cis-element analysis showed that the PtEXs were closely associated with plant development and responses to phytohormone and abiotic stress. Quantitative real-time PCR showed that abscisic acid (ABA) and low-temperature treatment affected the expression of some PtEXs genes, suggesting that these genes are involved in responses to phytohormone and abiotic stress. This study provides a further understanding of the expansin gene family in Populus and forms a basis for future functional research studies.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Genome-wide analysis of the WRKY gene family and their response to low-temperature stress in elephant grass
    Mao, Chunli
    Zhang, Jian
    Zhang, Yaning
    Wang, Bixian
    Li, Weihang
    Wang, Xiaoshan
    Huang, Linkai
    BMC GENOMICS, 2024, 25 (01):
  • [42] Genome-Wide Characterization and Expression Analysis of the Abscisic Acid Receptors PYR/PYL/RCAR (PYLs) in Chinese Cabbage during Abiotic Stresses
    Fu, X. X.
    Tang, J.
    Zhang, C. W.
    Gao, L. W.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2022, 69 (02)
  • [43] Genome-Wide Characterization and Expression Analysis of the Abscisic Acid Receptors PYR/PYL/RCAR (PYLs) in Chinese Cabbage during Abiotic Stresses
    X. X. Fu
    J. Tang
    C. W. Zhang
    L. W. Gao
    Russian Journal of Plant Physiology, 2022, 69
  • [44] Characterization of the GATA gene family in Vitis vinifera: genome-wide analysis, expression profiles, and involvement in light and phytohormone response
    Zhang, Zhan
    Ren, Chong
    Zou, Luming
    Wang, Yi
    Li, Shaohua
    Liang, Zhenchang
    GENOME, 2018, 61 (10) : 713 - 723
  • [45] Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in Andrographis paniculata
    Wang, Qichao
    Zeng, Wujing
    Ali, Basharat
    Zhang, Xuemin
    Xu, Ling
    Liang, Zongsuo
    BIOCELL, 2021, 45 (04) : 1107 - 1119
  • [46] Genome-wide identification of NAC gene family and expression analysis under abiotic stresses in Salvia miltiorrhiza
    Li, Xin
    Pan, Jianmin
    Islam, Faisal
    Li, Juanjuan
    Hou, Zhuoni
    Yang, Zongqi
    Xu, Ling
    BIOCELL, 2022, 46 (08) : 1947 - 1958
  • [47] Genome-Wide Identification of NAC Gene Family and Expression Analysis under Abiotic Stresses in Avena sativa
    Ling, Lei
    Li, Mingjing
    Chen, Naiyu
    Xie, Xinying
    Han, Zihui
    Ren, Guoling
    Yin, Yajie
    Jiang, Huixin
    GENES, 2023, 14 (06)
  • [48] Genome-Wide Identification of the Maize Chitinase Gene Family and Analysis of Its Response to Biotic and Abiotic Stresses
    Wang, Tonghan
    Wang, Changjin
    Liu, Yang
    Zou, Kunliang
    Guan, Minghui
    Wu, Yutong
    Yue, Shutong
    Hu, Ying
    Yu, Haibing
    Zhang, Kaijing
    Wu, Degong
    Du, Junli
    GENES, 2024, 15 (10)
  • [49] Genome-wide analysis of TPX2 gene family in Populus trichocarpa and its specific response genes under various abiotic stresses
    Qi, Meng
    Wang, Shengjie
    Li, Na
    Li, Lingfeng
    Zhang, Yue
    Xue, Jingyi
    Wang, Jingyi
    Wu, Rongling
    Lian, Na
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [50] Genome-wide characterization of Remorin gene family and their responsive expression to abiotic stresses and plant hormone in Brassica napus
    Sun, Nan
    Zhou, Jiale
    Liu, Yanfeng
    Li, Dong
    Xu, Xin
    Zhu, Zihao
    Xu, Xuesheng
    Zhan, Renhui
    Zhang, Hongxia
    Wang, Limin
    PLANT CELL REPORTS, 2024, 43 (06)