Noncommutative geometry of computational models and uniformization for framed quiver varieties

被引:0
作者
Jeffreys, George [1 ]
Lau, Siu-Cheong [1 ]
机构
[1] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
关键词
Noncommutative geometry; near-rings; neural networks; deep learning; representation theory; moduli spaces; FINITE; REPRESENTATIONS; MODULI;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate a mathematical setup for computational neural networks using noncommutative algebras and near-rings, in motivation of quantum automata. We study the moduli space of the corresponding framed quiver representations, and find moduli of Euclidean and non-compact types in light of uniformization.
引用
收藏
页码:731 / 789
页数:59
相关论文
共 32 条
  • [1] Armenta M.A., 2020, The representation theory of neural networks
  • [2] Double framed moduli spaces of quiver representations
    Armenta, Marco
    Bruestle, Thomas
    Hassoun, Souheila
    Reineke, Markus
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 650 : 98 - 131
  • [3] Derived representation schemes and cyclic homology
    Berest, Yuri
    Khachatryan, George
    Ramadoss, Ajay
    [J]. ADVANCES IN MATHEMATICS, 2013, 245 : 625 - 689
  • [4] On the structure of abstract algebras
    Birkhoff, G
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1935, 31 : 433 - 454
  • [5] Cheng MCN, 2019, Arxiv, DOI arXiv:1906.02481
  • [6] Chen Y., Embeddings from noncompact symmetric spaces to their compact duals
  • [7] Cohen T.S, 2018, INT C LEARNING REPRE
  • [8] Cohen T, 2020, Arxiv, DOI arXiv:1811.02017
  • [9] Cohen TS, 2019, PR MACH LEARN RES, V97
  • [10] Cohen TS, 2016, PR MACH LEARN RES, V48