A modified seahorse optimization algorithm based on chaotic maps for solving global optimization and engineering problems

被引:28
作者
Ozbay, Feyza Altunbey [1 ]
机构
[1] Firat Univ, Fac Engn, Software Engn, Elazig, Turkiye
来源
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH | 2023年 / 41卷
关键词
Chaotic map; Global optimization; Metaheuristics; Nature -inspired optimization; Seahorse optimization; SEARCH ALGORITHM;
D O I
10.1016/j.jestch.2023.101408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metaheuristic optimization algorithms are global optimization approaches that manage the search process to efficiently explore search spaces associated with different optimization problems. Seahorse optimization (SHO) is a novel swarm-based metaheuristic optimization method inspired by certain behaviors of sea horses. The SHO algorithm mimics the movement, hunting, and breeding behavior of sea horses in nature. Chaotic maps are effectively used to improve the performance of metaheuristic algorithms by avoiding the local optimum and increasing the speed of convergence. In this study, 10 different chaotic maps have been employed for the first time to produce chaotic values rather than random values in SHO, increasing the performance of the method. The purpose of using chaotic maps that generate chaotic values to their random values in SHO is to increase the convergence speed of the original SHO algorithm and avoid the local optimum. 33 different benchmark functions, consisting of unimodal, multimodal, fixeddimension multimodal, and CEC2019, have been utilized to assess the performance of Chaotic SHO (CSHO), which is first introduced in this study. In addition, the proposed CSHO has been compared with four metaheuristic algorithms in the literature, namely Sine Cosine Algorithm, Salp Swarm Algorithm, Whale Optimization Algorithm, and Particle Swarm Optimization. Statistical analyses of the obtained results have been also performed. The proposed CSHO is then implemented to 4 different real-world engineering design problems, including the welded beam, pressure vessel, tension/compression spring, and speed reducer. The results obtained with CSHO are compared with popular metaheuristic methods in the literature. Experimental results show that it gives successful and promising results compared to the original SHO algorithm.(c) 2023 The Authors. Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:26
相关论文
共 50 条
  • [31] A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems
    Luo, Jun
    Shi, Baoyu
    APPLIED INTELLIGENCE, 2019, 49 (05) : 1982 - 2000
  • [32] Hybrid Evolutionary Algorithm for Solving Global Optimization Problems
    Thangaraj, Radha
    Pant, Millie
    Abraham, Ajith
    Badr, Youakim
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2009, 5572 : 310 - +
  • [33] Global Optimization Algorithm for Solving a Class of Multiplicative Problems
    Yin, Jingben
    Jiao, Hongwei
    Gang, Peiyong
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 414 - 418
  • [34] An algorithm for solving global optimization problems with nonlinear constraints
    Sergeyev, YD
    Markin, DL
    JOURNAL OF GLOBAL OPTIMIZATION, 1995, 7 (04) : 407 - 419
  • [35] Improved Salp Swarm Algorithm with mutation schemes for solving global optimization and engineering problems
    Nautiyal, Bhaskar
    Prakash, Rishi
    Vimal, Vrince
    Liang, Guoxi
    Chen, Huiling
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 5) : 3927 - 3949
  • [36] A Novel Artificial Electric Field Algorithm for Solving Global Optimization and Real-World Engineering Problems
    Hussien, Abdelazim G.
    Pop, Adrian
    Kumar, Sumit
    Hashim, Fatma A.
    Hu, Gang
    BIOMIMETICS, 2024, 9 (03)
  • [37] Guided Hybrid Modified Simulated Annealing Algorithm for Solving Constrained Global Optimization Problems
    Alnowibet, Khalid Abdulaziz
    Mahdi, Salem
    El-Alem, Mahmoud
    Abdelawwad, Mohamed
    Mohamed, Ali Wagdy
    MATHEMATICS, 2022, 10 (08)
  • [38] Parallel Algorithm for Solving Constrained Global Optimization Problems
    Barkalov, Konstantin
    Lebedev, Ilya
    PARALLEL COMPUTING TECHNOLOGIES (PACT 2017), 2017, 10421 : 396 - 404
  • [39] Chaotic-Based Mountain Gazelle Optimizer for Solving Optimization Problems
    Sarangi, Priteesha
    Mohapatra, Prabhujit
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [40] Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems
    Fu, Youfa
    Liu, Dan
    Chen, Jiadui
    He, Ling
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (05)