A modified seahorse optimization algorithm based on chaotic maps for solving global optimization and engineering problems

被引:28
作者
Ozbay, Feyza Altunbey [1 ]
机构
[1] Firat Univ, Fac Engn, Software Engn, Elazig, Turkiye
来源
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH | 2023年 / 41卷
关键词
Chaotic map; Global optimization; Metaheuristics; Nature -inspired optimization; Seahorse optimization; SEARCH ALGORITHM;
D O I
10.1016/j.jestch.2023.101408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metaheuristic optimization algorithms are global optimization approaches that manage the search process to efficiently explore search spaces associated with different optimization problems. Seahorse optimization (SHO) is a novel swarm-based metaheuristic optimization method inspired by certain behaviors of sea horses. The SHO algorithm mimics the movement, hunting, and breeding behavior of sea horses in nature. Chaotic maps are effectively used to improve the performance of metaheuristic algorithms by avoiding the local optimum and increasing the speed of convergence. In this study, 10 different chaotic maps have been employed for the first time to produce chaotic values rather than random values in SHO, increasing the performance of the method. The purpose of using chaotic maps that generate chaotic values to their random values in SHO is to increase the convergence speed of the original SHO algorithm and avoid the local optimum. 33 different benchmark functions, consisting of unimodal, multimodal, fixeddimension multimodal, and CEC2019, have been utilized to assess the performance of Chaotic SHO (CSHO), which is first introduced in this study. In addition, the proposed CSHO has been compared with four metaheuristic algorithms in the literature, namely Sine Cosine Algorithm, Salp Swarm Algorithm, Whale Optimization Algorithm, and Particle Swarm Optimization. Statistical analyses of the obtained results have been also performed. The proposed CSHO is then implemented to 4 different real-world engineering design problems, including the welded beam, pressure vessel, tension/compression spring, and speed reducer. The results obtained with CSHO are compared with popular metaheuristic methods in the literature. Experimental results show that it gives successful and promising results compared to the original SHO algorithm.(c) 2023 The Authors. Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A Modified Osprey Optimization Algorithm for Solving Global Optimization and Engineering Optimization Design Problems
    Zhou, Liping
    Liu, Xu
    Tian, Ruiqing
    Wang, Wuqi
    Jin, Guowei
    SYMMETRY-BASEL, 2024, 16 (09):
  • [2] Chaotic guided local search algorithm for solving global optimization and engineering problems
    Naanaa, Anis
    Journal of Combinatorial Optimization, 2025, 49 (04)
  • [3] Opposition Based Chaotic Differential Evolution Algorithm for Solving Global Optimization Problems
    Thangaraj, Radha
    Pant, Millie
    Chelliah, Thanga Raj
    Abraham, Ajith
    PROCEEDINGS OF THE 2012 FOURTH WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2012, : 1 - 7
  • [4] A novel arithmetic optimization algorithm based on chaotic maps for global optimization
    Salih Berkan Aydemir
    Evolutionary Intelligence, 2023, 16 : 981 - 996
  • [6] Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization
    Naanaa, Anis
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 402 - 411
  • [7] Modified crayfish optimization algorithm for solving multiple engineering application problems
    Jia, Heming
    Zhou, Xuelian
    Zhang, Jinrui
    Abualigah, Laith
    Yildiz, Ali Riza
    Hussien, Abdelazim G.
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (05)
  • [8] A Modified Group Teaching Optimization Algorithm for Solving Constrained Engineering Optimization Problems
    Rao, Honghua
    Jia, Heming
    Wu, Di
    Wen, Changsheng
    Li, Shanglong
    Liu, Qingxin
    Abualigah, Laith
    MATHEMATICS, 2022, 10 (20)
  • [9] A new approach for solving global optimization and engineering problems based on modified sea horse optimizer
    Hashim, Fatma A.
    Mostafa, Reham R.
    Abu Khurma, Ruba
    Qaddoura, Raneem
    Castillo, Pedro A.
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2024, 11 (01) : 73 - 98
  • [10] MHO: A Modified Hippopotamus Optimization Algorithm for Global Optimization and Engineering Design Problems
    Han, Tao
    Wang, Haiyan
    Li, Tingting
    Liu, Quanzeng
    Huang, Yourui
    BIOMIMETICS, 2025, 10 (02)