The Weyl correspondence in the linear canonical transform domain

被引:0
|
作者
Kumar, Amit [1 ]
Prasad, Akhilesh [1 ]
Jain, Pankaj [2 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad 826004, Jharkhand, India
[2] South Asian Univ, Dept Math, New Delhi 110023, India
关键词
Linear canonical transform; Weyl transform; Wigner-Ville distribution; Linear canonical-Wigner transform;
D O I
10.2298/FIL2322431K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of the paper is to generalize and enrich the Weyl transform by introducing the Weyl correspondence in the linear canonical transform (LCT) domain. In this paper, we propose the linear canonical-Wigner transform in harmonic analysis of phase space along with the admissible Wigner-Ville distribution (WVD) and Weyl transform in the LCT domain and discuss some useful results. Further we establish the relationship between the Wigner-Ville distribution and the Weyl transform in the LCT domain.
引用
收藏
页码:7431 / 7444
页数:14
相关论文
共 50 条
  • [31] Nonuniform sampling for random signals bandlimited in the linear canonical transform domain
    Haiye Huo
    Wenchang Sun
    Multidimensional Systems and Signal Processing, 2020, 31 : 927 - 950
  • [32] Multichannel sampling and reconstruction of bandlimited signals in the linear canonical transform domain
    Wei, D. Y.
    Ran, Q. W.
    Li, Y. M.
    IET SIGNAL PROCESSING, 2011, 5 (08) : 717 - 727
  • [33] The Extrapolation Theorem for Discrete Signals in the Offset Linear Canonical Transform Domain
    Shuiqing Xu
    Li Feng
    Yi Chai
    Tingli Cheng
    Yigang He
    Circuits, Systems, and Signal Processing, 2022, 41 : 609 - 620
  • [34] Nonuniform sampling theorems for random signals in the linear canonical transform domain
    Xu Shuiqing
    Jiang Congmei
    Chai Yi
    Hu Youqiang
    Huang Lei
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2018, 105 (06) : 1051 - 1062
  • [35] Generalized inequalities for nonuniform wavelet frames in linear canonical transform domain
    Bhat, M. Younus
    FILOMAT, 2023, 37 (12) : 3725 - 3735
  • [36] Pseudo-differential operator in the framework of linear canonical transform domain
    Prasad, Akhilesh
    Ansari, Z. A.
    Jain, Pankaj
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (07)
  • [37] Linear canonical ambiguity function and linear canonical transform moments
    Zhao, Hui
    Ran, Qi-Wen
    Ma, Jing
    Tan, Li-Ying
    OPTIK, 2011, 122 (06): : 540 - 543
  • [38] Linear Canonical Bargmann Transform
    Linghu, Rong-Qian
    Li, Bing-Zhao
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 19 (01)
  • [39] Metrology and the linear canonical transform
    Hennelly, Bryan M.
    Kelly, Damien P.
    Ward, Jennifer E.
    Patten, Robert
    Gopinathan, Unnikrishnan
    O'Neill, Feidhlim T.
    Sheridan, John T.
    JOURNAL OF MODERN OPTICS, 2006, 53 (15) : 2167 - 2186
  • [40] Eigenfunctions of linear canonical transform
    Pei, SC
    Ding, JJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (01) : 11 - 26