The Weyl correspondence in the linear canonical transform domain

被引:0
|
作者
Kumar, Amit [1 ]
Prasad, Akhilesh [1 ]
Jain, Pankaj [2 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad 826004, Jharkhand, India
[2] South Asian Univ, Dept Math, New Delhi 110023, India
关键词
Linear canonical transform; Weyl transform; Wigner-Ville distribution; Linear canonical-Wigner transform;
D O I
10.2298/FIL2322431K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of the paper is to generalize and enrich the Weyl transform by introducing the Weyl correspondence in the linear canonical transform (LCT) domain. In this paper, we propose the linear canonical-Wigner transform in harmonic analysis of phase space along with the admissible Wigner-Ville distribution (WVD) and Weyl transform in the LCT domain and discuss some useful results. Further we establish the relationship between the Wigner-Ville distribution and the Weyl transform in the LCT domain.
引用
收藏
页码:7431 / 7444
页数:14
相关论文
共 50 条
  • [21] Generalized inequalities for nonuniform wavelet frames in linear canonical transform domain
    Bhat, M. Younus
    FILOMAT, 2023, 37 (12) : 3725 - 3735
  • [22] Pseudo-differential operator in the framework of linear canonical transform domain
    Prasad, Akhilesh
    Ansari, Z. A.
    Jain, Pankaj
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (07)
  • [23] Filter Design for Constrained Signal Reconstruction in Linear Canonical Transform Domain
    Shi, Jun
    Liu, Xiaoping
    Zhao, Yanan
    Shi, Shuo
    Sha, Xuejun
    Zhang, Qinyu
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (24) : 6534 - 6548
  • [24] Linear canonical ambiguity function and linear canonical transform moments
    Zhao, Hui
    Ran, Qi-Wen
    Ma, Jing
    Tan, Li-Ying
    OPTIK, 2011, 122 (06): : 540 - 543
  • [25] Eigenfunctions of linear canonical transform
    Pei, SC
    Ding, JJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (01) : 11 - 26
  • [26] Linear canonical Stockwell transform
    Shah, Firdous A.
    Tantary, Azhar Y.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
  • [27] Wigner-Ville distribution function in the framework of linear canonical transform
    Amit Kumar
    Akhilesh Prasad
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [28] Wigner-Ville distribution function in the framework of linear canonical transform
    Kumar, Amit
    Prasad, Akhilesh
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (03)
  • [29] Linear canonical wavelet transform and linear canonical wave packet transform on the Schwartz type spaces
    Rejini, M. Thanga
    Moorthy, R. Subash
    JOURNAL OF ANALYSIS, 2023, 33 (2) : 455 - 479
  • [30] Multichannel sampling expansion in the linear canonical transform domain and its application to superresolution
    Wei, Deyun
    Ran, Qiwen
    Li, Yuanmin
    OPTICS COMMUNICATIONS, 2011, 284 (23) : 5424 - 5429