The Weyl correspondence in the linear canonical transform domain

被引:0
|
作者
Kumar, Amit [1 ]
Prasad, Akhilesh [1 ]
Jain, Pankaj [2 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad 826004, Jharkhand, India
[2] South Asian Univ, Dept Math, New Delhi 110023, India
关键词
Linear canonical transform; Weyl transform; Wigner-Ville distribution; Linear canonical-Wigner transform;
D O I
10.2298/FIL2322431K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of the paper is to generalize and enrich the Weyl transform by introducing the Weyl correspondence in the linear canonical transform (LCT) domain. In this paper, we propose the linear canonical-Wigner transform in harmonic analysis of phase space along with the admissible Wigner-Ville distribution (WVD) and Weyl transform in the LCT domain and discuss some useful results. Further we establish the relationship between the Wigner-Ville distribution and the Weyl transform in the LCT domain.
引用
收藏
页码:7431 / 7444
页数:14
相关论文
共 50 条
  • [1] Random Signal Analysis in the Linear Canonical Transform Domain
    Xu, Liyun
    Zhang, Feng
    Lu, Mingfeng
    Wu, Xin
    2016 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (URSI AP-RASC), 2016, : 1862 - 1865
  • [2] Sampling of bandlimited signals in the linear canonical transform domain
    Wei, Deyun
    Ran, Qiwen
    Li, Yuanmin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2013, 7 (03) : 553 - 558
  • [3] Extrapolation of Bandlimited Signals in Linear Canonical Transform Domain
    Shi, Jun
    Sha, Xuejun
    Zhang, Qinyu
    Zhang, Naitong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) : 1502 - 1508
  • [4] The analysis of decimation and interpolation in the linear canonical transform domain
    Xu, Shuiqing
    Chai, Yi
    Hu, Youqiang
    Huang, Lei
    Feng, Li
    SPRINGERPLUS, 2016, 5
  • [5] Sampling of bandlimited signals in the linear canonical transform domain
    Deyun Wei
    Qiwen Ran
    Yuanmin Li
    Signal, Image and Video Processing, 2013, 7 : 553 - 558
  • [6] Weighted Heisenberg-Pauli-Weyl uncertainty principles for the linear canonical transform
    Feng, Qiang
    Li, Bing-Zhao
    Rassias, John-Michael
    SIGNAL PROCESSING, 2019, 165 : 209 - 221
  • [7] The Wigner-Ville Distribution Based on the Offset Linear Canonical Transform Domain
    Urynbassarova, Didar
    Urynbassarova, Altyn
    Al-Hussam, Ebrahim
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 139 - 142
  • [8] Generalized wavelet transform based on the convolution operator in the linear canonical transform domain
    Wei, Deyun
    Li, Yuan-Min
    OPTIK, 2014, 125 (16): : 4491 - 4496
  • [9] Extrapolation of discrete bandlimited signals in linear canonical transform domain
    Zhao, Hui
    Wang, Ruyan
    Song, Daiping
    Zhang, Tianqi
    Wu, Dapeng
    SIGNAL PROCESSING, 2014, 94 : 212 - 218
  • [10] Regularized sampling reconstruction of signals in the linear canonical transform domain
    Annaby, M. H.
    Al-Abdi, I. A.
    Abou-Dina, M. S.
    Ghaleb, A. F.
    SIGNAL PROCESSING, 2022, 198