Phase separation in supramolecular and covalent adaptable networks

被引:19
|
作者
de Heer Kloots, Martijn H. P. [1 ,2 ]
Schoustra, Sybren K. [1 ]
Dijksman, Joshua A. [2 ,3 ]
Smulders, Maarten M. J. [1 ]
机构
[1] Wageningen Univ, Lab Organ Chem, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[2] Wageningen Univ, Phys Chem & Soft Matter, Stippeneng 4, NL-6708 WE Wageningen, Netherlands
[3] Univ Amsterdam, Waals Zeeman Inst, Inst Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
关键词
SELF-HEALING POLYMERS; CROSS-LINK DENSITY; PI-PI-STACKING; MICROPHASE SEPARATION; THERMOPLASTIC ELASTOMERS; MECHANICAL-PROPERTIES; BLOCK-COPOLYMER; END-GROUPS; VITRIMERS; CRYSTALLIZATION;
D O I
10.1039/d3sm00047h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase separation phenomena have been studied widely in the field of polymer science, and were recently also reported for dynamic polymer networks (DPNs). The mechanisms of phase separation in dynamic polymer networks are of particular interest as the reversible nature of the network can participate in the structuring of the micro- and macroscale domains. In this review, we highlight the underlying mechanisms of phase separation in dynamic polymer networks, distinguishing between supramolecular polymer networks and covalent adaptable networks (CANs). Also, we address the synergistic effects between phase separation and reversible bond exchange. We furthermore discuss the effects of phase separation on the material properties, and how this knowledge can be used to enhance and tune material properties.
引用
收藏
页码:2857 / 2877
页数:21
相关论文
共 50 条
  • [31] Degradable and Biobased Covalent Adaptable Networks for Light Controllable Switch
    Ma, Xiaozhen
    Wang, Xiaolin
    Zhao, Honglong
    Cui, Minghui
    Xu, Xiaobo
    Kong, Fangfang
    Chen, Peng
    Yan, Ning
    Zhu, Jin
    Chen, Jing
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (16) : 6289 - 6299
  • [32] Probing the Solubility of Imine-Based Covalent Adaptable Networks
    Schoustra, Sybren Klaas
    Asadi, Vahid
    Smulders, Maarten Marinus Johannes
    ACS APPLIED POLYMER MATERIALS, 2023, 6 (01) : 79 - 89
  • [33] Frontal polymerization of thiol-acrylate covalent adaptable networks
    Schmidleitner, Christoph
    Kriehuber, Matthias Udo
    Korotkov, Roman
    Schloegl, Sandra
    Rossegger, Elisabeth
    POLYMER CHEMISTRY, 2025, 16 (08) : 963 - 971
  • [34] Covalent adaptable networks: smart, reconfigurable and responsive network systems
    Kloxin, Christopher J.
    Bowman, Christopher N.
    CHEMICAL SOCIETY REVIEWS, 2013, 42 (17) : 7161 - 7173
  • [35] Progress in the design and synthesis of biobased epoxy covalent adaptable networks
    Zhao, Xiao-Li
    Li, Yi-Dong
    Zeng, Jian-Bing
    POLYMER CHEMISTRY, 2022, 13 (48) : 6573 - 6588
  • [36] Structure-Reactivity-Property Relationships in Covalent Adaptable Networks
    Zhang, Vivian
    Kang, Boyeong
    V. Accardo, Joseph
    Kalow, Julia A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (49) : 22358 - 22377
  • [37] Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanes
    van Hurne, Simon
    Kisters, Marijn
    Smulders, Maarten M. J.
    FRONTIERS IN CHEMISTRY, 2023, 11
  • [38] Nanotechnology in Covalent Adaptable Networks: from Nanocomposites to Surface Patterning
    Wang, Sheng
    Li, Bofan
    Zheng, Jie
    Surat'man, Nayli Erdeanna Binte
    Wu, Jing
    Wang, Nannan
    Xu, Xiwei
    Zhu, Jin
    Loh, Xian Jun
    Li, Zibiao
    ACS MATERIALS LETTERS, 2023, 5 (02): : 608 - 628
  • [39] Postpolymerization modification of liquid crystal alignment in covalent adaptable networks
    McBride, Matthew
    Lin, Danqing
    Hendrikx, Matthew
    Broer, Dirk
    Bowman, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [40] Covalent Adaptable Networks Made by Reactive Processing of Highly Entangled Polymer: Synthesis-Structure-Thermomechanical Property-Reprocessing Relationship in Covalent Adaptable Networks
    Fenimore, Logan M.
    Suazo, Mathew J.
    Torkelson, John M.
    MACROMOLECULES, 2024, 57 (06) : 2756 - 2772