Thermal degradation and performance evolution mechanism of fully recyclable 3D printed continuous fiber self-reinforced composites

被引:3
|
作者
Zhang, Manyu [1 ]
Tian, Xiaoyong [1 ]
Liu, Tengfei [1 ]
Wang, Peizhen [1 ]
Cao, Hanjie [1 ]
Li, Dichen [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, 28 XianNing west Rd, Xian 710049, Shaanxi, Peoples R China
关键词
3D printing; Continuous fiber self-reinforced composites; Closed-loop recycling; Degradation mechanism; Space application; CARBON-FIBER; TECHNOLOGIES;
D O I
10.1016/j.susmat.2023.e00706
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An innovative recycling method that does not require separation of the reinforcement and matrix is been pro-posed based on 3D printing of continuous fiber self-reinforced composites. The continuous fiber self-reinforced polyphenylene sulfide (PPS) composites were mechanically ground and directly remanufactured by screw extrusion 3D printing. The recycling procedure was accelerated and the thermal processing of the material was reduced. This recycling paradigm of self-reinforced composites with in-situ resource utilization is ideally suited to the space environment. The recycled self-reinforced composites showed no significant loss in tensile properties and even exhibited a slight increase after multiple recycling cycles owing to the melted PPS fiber in comparison with original PPS matrix. Since recycled material didn't separate the fiber from the matrix, its flexural strength and modulus increased by 34.11% and 51.81%, respectively, when compared to original PPS matrix. Molecular structure, rheological changes, and crystallization behavior were systematically investigated to elaborate the thermal degradation mechanism of recycled composites. The results obtained from systematical characterizations indicated that the recycled composites formed the cross-linking structure when subjected to multiple screw extrusion processing. The energy consumption of the screw extrusion-based 3D printing method was also con-ducted. The total energy intensity of recycling and remanufacturing processes were only about 17.9 MJ/kg. Spatial suitability, considering the advantages of self-reinforced composite recycling for space applications, were analyzed. Finally, theoretical material recovery rate of 100% for self-reinforced composites opens the prospect to reduce maintenance logistics in space. A future application scenario for fully recyclable self-reinforced composites in space was explored.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] 3D printed fiber reinforced polymer composites - Structural analysis
    Mohammadizadeh, M.
    Imeri, A.
    Fidan, I
    Elkelany, M.
    COMPOSITES PART B-ENGINEERING, 2019, 175
  • [42] Recent advances in 3D printed fiber reinforced composites: Processing technique and mechanical performance
    Long Y.
    Li Y.
    Fu K.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (09): : 4196 - 4212
  • [43] 3D printing continuous natural fiber reinforced polymer composites: A review
    Cheng, Ping
    Peng, Yong
    Wang, Kui
    Le Duigou, Antoine
    Ahzi, Said
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2024, 35 (01)
  • [44] Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites
    Liu, Tengfei
    Tian, Xiaoyong
    Zhang, Manyu
    Abliz, Dilmurat
    Li, Dichen
    Ziegmann, Gerhard
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 114 : 368 - 376
  • [45] Failure mechanisms of 3D printed continuous fiber reinforced thermoplastic composites with complex fiber configurations under impact
    Ning, Haibin
    Flater, Philip
    Gaskey, Bernard
    Gibbons, Sean
    PROGRESS IN ADDITIVE MANUFACTURING, 2024, 9 (04) : 753 - 766
  • [46] Mechanical, Thermal, and Electrical Properties on 3D Printed Short Carbon Fiber Reinforced Polypropylene Composites
    Zhan, Xiugan
    Su, Ke
    Tuo, Xiaohang
    Gong, Yumei
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (07) : 3787 - 3795
  • [47] Cryogenic tensile performance of 3D printed onyx-continuous carbon fiber composites
    Siddiqui, Sanna F.
    Archer, Andre
    Fandetti, Dustin
    McGee, Carl
    RAPID PROTOTYPING JOURNAL, 2023, 29 (09) : 1862 - 1878
  • [48] Electrical resistance-based self-monitoring of manufacturing damage in 3D printed continuous carbon fiber reinforced composites
    Cheng, Ping
    Ye, Zezhen
    Huang, Yangyu
    Wang, Depeng
    Peng, Yong
    Wang, Kui
    Ahzi, Said
    COMPOSITES COMMUNICATIONS, 2023, 43
  • [49] Adjustment of Mechanical Properties of 3D Printed Continuous Carbon Fiber-Reinforced Thermoset Composites by Print Parameter Adjustments
    Rahman, Md Atikur
    Gibbon, Luke
    Islam, Md Zahirul
    Hall, Eric
    Ulven, Chad A.
    POLYMERS, 2024, 16 (21)
  • [50] Tensile properties of 3D printed continuous fiberglass reinforced cellular composites
    Mathur, Kavita
    Kabir, S. M. Fijul
    Seyam, Abdel-Fattah M.
    JOURNAL OF THE TEXTILE INSTITUTE, 2022, 113 (01) : 60 - 69