Thermal degradation and performance evolution mechanism of fully recyclable 3D printed continuous fiber self-reinforced composites

被引:3
|
作者
Zhang, Manyu [1 ]
Tian, Xiaoyong [1 ]
Liu, Tengfei [1 ]
Wang, Peizhen [1 ]
Cao, Hanjie [1 ]
Li, Dichen [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, 28 XianNing west Rd, Xian 710049, Shaanxi, Peoples R China
关键词
3D printing; Continuous fiber self-reinforced composites; Closed-loop recycling; Degradation mechanism; Space application; CARBON-FIBER; TECHNOLOGIES;
D O I
10.1016/j.susmat.2023.e00706
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An innovative recycling method that does not require separation of the reinforcement and matrix is been pro-posed based on 3D printing of continuous fiber self-reinforced composites. The continuous fiber self-reinforced polyphenylene sulfide (PPS) composites were mechanically ground and directly remanufactured by screw extrusion 3D printing. The recycling procedure was accelerated and the thermal processing of the material was reduced. This recycling paradigm of self-reinforced composites with in-situ resource utilization is ideally suited to the space environment. The recycled self-reinforced composites showed no significant loss in tensile properties and even exhibited a slight increase after multiple recycling cycles owing to the melted PPS fiber in comparison with original PPS matrix. Since recycled material didn't separate the fiber from the matrix, its flexural strength and modulus increased by 34.11% and 51.81%, respectively, when compared to original PPS matrix. Molecular structure, rheological changes, and crystallization behavior were systematically investigated to elaborate the thermal degradation mechanism of recycled composites. The results obtained from systematical characterizations indicated that the recycled composites formed the cross-linking structure when subjected to multiple screw extrusion processing. The energy consumption of the screw extrusion-based 3D printing method was also con-ducted. The total energy intensity of recycling and remanufacturing processes were only about 17.9 MJ/kg. Spatial suitability, considering the advantages of self-reinforced composite recycling for space applications, were analyzed. Finally, theoretical material recovery rate of 100% for self-reinforced composites opens the prospect to reduce maintenance logistics in space. A future application scenario for fully recyclable self-reinforced composites in space was explored.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Interfacial Transcrystallization and Mechanical Performance of 3D-Printed Fully Recyclable Continuous Fiber Self-Reinforced Composites
    Zhang, Manyu
    Tian, Xiaoyong
    Li, Dichen
    POLYMERS, 2021, 13 (18)
  • [2] 3D printing of fully recyclable continuous fiber self-reinforced composites utilizing supercooled polymer melts
    Zhang, Manyu
    Tian, Xiaoyong
    Cao, Hanjie
    Liu, Tengfei
    Zia, Ali Akmal
    Li, Dichen
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 169
  • [3] Research on 3D Printing of Continuous Fiber Self-reinforced Composites and Its Recyclability
    Cao, Hanjie
    Zhang, Manyu
    Tian, Xiaoyong
    Liu, Tengfei
    Li, Dichen
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (23): : 188 - 195
  • [4] Thermal and Mechanical Characterization of 3D Printed Continuous Fiber Reinforced Composites
    Abbott, Andrew C.
    Furmanski, Jevan
    Tandon, G. P.
    Koerner, Hilmar
    Butcher, Dennis
    SAMPE JOURNAL, 2023, 59 (06) : 20 - 30
  • [5] Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites
    Tian, Xiaoyong
    Liu, Tengfei
    Yang, Chuncheng
    Wang, Qingrui
    Li, Dichen
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 88 : 198 - 205
  • [6] 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance
    Yang, Chuncheng
    Tian, Xiaoyong
    Liu, Tengfei
    Cao, Yi
    Li, Dichen
    RAPID PROTOTYPING JOURNAL, 2017, 23 (01) : 209 - 215
  • [7] Maximizing the Performance of 3D Printed Fiber-Reinforced Composites
    Kabir, S. M. Fijul
    Mathur, Kavita
    Seyam, Abdel-Fattah M.
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (05):
  • [8] Impact resistance and failure mechanism of 3D printed continuous fiber-reinforced cellular composites
    Kabir, S. M. Fijul
    Mathur, Kavita
    Seyam, Abdel-Fattah M.
    JOURNAL OF THE TEXTILE INSTITUTE, 2021, 112 (05) : 752 - 766
  • [9] Strain rate dependence of 3D printed continuous fiber reinforced composites
    Li, Jiahui
    Xu, Shanqing
    Durandet, Yvonne
    Gao, Wei
    Huang, Xiaodong
    Ruan, Dong
    COMPOSITES PART B-ENGINEERING, 2024, 277
  • [10] Mechanical and self-sensing properties of 3D printed continuous carbon fiber reinforced composites
    Ye, Wenguang
    Dou, Hao
    Cheng, Yunyong
    Zhang, Dinghua
    Lin, Sheng
    POLYMER COMPOSITES, 2022, 43 (10) : 7428 - 7437