WELL-POSEDNESS AND SINGULARITY FORMATION FOR VLASOV-RIESZ SYSTEM

被引:4
作者
Choi, Young-Pil [1 ]
Jeong, In-Jee [2 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 03722, South Korea
[2] Seoul Natl Univ, Dept Math & RIM, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
FOKKER-PLANCK EQUATION; CLASSICAL-SOLUTIONS; GLOBAL EXISTENCE; MANEV EQUATIONS; WEAK SOLUTIONS; PRINCIPLE; GRAVITATION; REGULARITY; ENERGY; PROPAGATION;
D O I
10.3934/krm.2023030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Cauchy problem for the Vlasov-Riesz system, which is a Vlasov equation featuring an interaction potential generalizing previously studied cases, including the Coulomb & phi; = (- increment )-1 & rho;, Manev (- increment )-1+ (- increment )-2, and pure Manev (- increment )- 1 1 2 potentials. For the first time, we extend the local theory of classical solutions to potentials more singular than that for the Manev. Then, we obtain finite-time singularity formation for solutions with various attractive interaction potentials, extending the well-known blowup result for attractive Vlasov-Poisson for d & GE; 4. Our local well-posedness and singularity formation results extend to cases when linear diffusion and damping in velocity are present.
引用
收藏
页码:489 / 513
页数:25
相关论文
共 51 条
[1]  
[Anonymous], 1894, Astron. J.
[2]  
[Anonymous], 1995, Differential Integ. Equations
[3]  
[Anonymous], 2013, The mathematical theory of dilute gases
[4]  
BARDOS C, 1985, ANN I H POINCARE-AN, V2, P101
[5]   THE CAUCHY PROBLEM FOR THE VLASOV-DIRAC-BENNEY EQUATION AND RELATED ISSUES IN FLUID MECHANICS AND SEMI-CLASSICAL LIMITS [J].
Bardos, Claude ;
Besse, Nicolas .
KINETIC AND RELATED MODELS, 2013, 6 (04) :893-917
[6]   A Vlasov equation with Dirac potential used in fusion plasmas [J].
Bardos, Claude ;
Nouri, Anne .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (11)
[7]   Large deviation techniques applied to systems with long-range interactions [J].
Barré, J ;
Bouchet, F ;
Dauxois, T ;
Ruffo, S .
JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (3-4) :677-713
[8]   On Vlasov-Manev equations .1. Foundations, properties, and nonglobal existence [J].
Bobylev, AV ;
Dukes, P ;
Illner, R ;
Victory, HD .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) :885-911
[9]   EXISTENCE AND UNIQUENESS OF A GLOBAL SMOOTH SOLUTION FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM IN 3 DIMENSIONS [J].
BOUCHUT, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) :239-258
[10]   ON THE INITIAL-VALUE PROBLEM FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM WITH INITIAL DATA IN L(P) SPACES [J].
CARRILLO, JA ;
SOLER, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1995, 18 (10) :825-839