State Feedback Controller Design for a Class of Generalized Proportional Fractional Order Nonlinear Systems

被引:3
作者
Alsharif, Ali Omar M. [1 ,2 ]
Jmal, Assaad [1 ]
Naifar, Omar [1 ]
Ben Makhlouf, Abdellatif [3 ]
Rhaima, Mohamed [4 ]
Mchiri, Lassaad [5 ]
机构
[1] Sfax Univ, Engn Natl Sch, Elect Engn Dept, Control & Energy Management Lab, Sfax 3038, Tunisia
[2] Elmergib Univ, Fac Engn, Dept Elect & Comp Engn, 7206, Alkhums, Libya
[3] Sfax Univ, Fac Sci, Dept Math, Sfax 1171, Tunisia
[4] King Saud Univ, Coll Sci, Dept Stat & Operat Res, Riyadh 11451, Saudi Arabia
[5] Univ Evry Val Essonne, ENSIIE, 1 Sq Resistance, F-91025 Courcouronnes, France
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 06期
关键词
Generalized Proportional Fractional Differential Equations; Generalized Proportional Fractional Derivative; state feedback controller; Lipschitz; One-Sided Lipschitz;
D O I
10.3390/sym15061168
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The state feedback controller design for a class of Generalized Proportional Fractional Order (GPFO) Nonlinear Systems is presented in this paper. The design is based on the combination of the One-Sided Lipschitz (OSL) system class with GPFO modeling. The main contribution of this study is that, to the best of the authors' knowledge, this work presents the first state feedback control design for GPFO systems. The suggested state feedback controller is intended to ensure the system's generalized Mittag Leffler (GML) stability and to deliver optimal performance. The findings of this paper show that the proposed strategy is effective in stabilizing Generalized Proportional Fractional Order Nonlinear Systems. A numerical example is presented to demonstrate the usefulness of the stated theoretical conclusions.
引用
收藏
页数:10
相关论文
共 23 条
[1]   Stability of Generalized Proportional Caputo Fractional Differential Equations by Lyapunov Functions [J].
Agarwal, Ravi ;
Hristova, Snezhana ;
O'Regan, Donal .
FRACTAL AND FRACTIONAL, 2022, 6 (01)
[2]   Output Tracking Control for High-Order Nonlinear Systems with Time Delay via Output Feedback Design [J].
Alimhan, Keylan ;
Mamyrbayev, Orken J. ;
Abdenova, Gaukhar A. ;
Akmetkalyeva, Almira .
SYMMETRY-BASEL, 2021, 13 (04)
[3]   Quadratic Lyapunov Functions for Stability of the Generalized Proportional Fractional Differential Equations with Applications to Neural Networks [J].
Almeida, Ricardo ;
Agarwal, Ravi P. ;
Hristova, Snezhana ;
O'Regan, Donal .
AXIOMS, 2021, 10 (04)
[4]   A Gronwall inequality via the generalized proportional fractional derivative with applications [J].
Alzabut, Jehad ;
Abdeljawad, Thabet ;
Jarad, Fahd ;
Sudsutad, Weerawat .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[5]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[6]  
Dekker K., 1984, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations
[7]   Nonlinear observer design for one-sided Lipschitz systems with time-varying delay and uncertainties [J].
Dong, Yali ;
Liu, Wanjun ;
Liang, Shuang .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (11) :1974-1998
[8]   Switched Control Design for Nonlinear Systems Using State Feedback [J].
Elias, Leandro J. ;
Faria, Flavio A. ;
Magossi, Rafael F. Q. ;
Oliveira, Vilma A. .
JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (03) :733-742
[9]   Model-Free Adaptive State Feedback Control for a Class of Nonlinear Systems [J].
Gao, Shouli ;
Zhao, Dongya ;
Yan, Xinggang ;
Spurgeon, Sarah K. K. .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) :1824-1836
[10]   An LMI Approach to Nonlinear State-Feedback Stability of Uncertain Time-Delay Systems in the Presence of Lipschitzian Nonlinearities [J].
Golestani, Mehdi ;
Mobayen, Saleh ;
HosseinNia, S. Hassan ;
Shamaghdari, Saeed .
SYMMETRY-BASEL, 2020, 12 (11) :1-17