Machine Learning Methods in Skin Disease Recognition: A Systematic Review

被引:8
作者
Sun, Jie [1 ]
Yao, Kai [1 ,2 ]
Huang, Guangyao [1 ]
Zhang, Chengrui [1 ,2 ]
Leach, Mark [1 ]
Huang, Kaizhu [3 ]
Yang, Xi [1 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
[2] Univ Liverpool, Sch Engn, Liverpool L69 3BX, Lancashire, England
[3] Duke Kunshan Univ, Data Sci Res Ctr, Kunshan 215316, Peoples R China
关键词
skin image segmentation; skin lesion classification; machine learning; deep learning; computer assisted diagnostics; dermatology; LESION SEGMENTATION; DERMOSCOPY; CLASSIFICATION; CHECKLIST; ALGORITHM; SELECTION;
D O I
10.3390/pr11041003
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Skin lesions affect millions of people worldwide. They can be easily recognized based on their typically abnormal texture and color but are difficult to diagnose due to similar symptoms among certain types of lesions. The motivation for this study is to collate and analyze machine learning (ML) applications in skin lesion research, with the goal of encouraging the development of automated systems for skin disease diagnosis. To assist dermatologists in their clinical diagnosis, several skin image datasets have been developed and published online. Such efforts have motivated researchers and medical staff to develop automatic skin diagnosis systems using image segmentation and classification processes. This paper summarizes the fundamental steps in skin lesion diagnosis based on papers mainly published since 2013. The applications of ML methods (including traditional ML and deep learning (DL)) in skin disease recognition are reviewed based on their contributions, methods, and achieved results. Such technical analysis is beneficial to the continuing development of reliable and effective computer-aided skin disease diagnosis systems. We believe that more research efforts will lead to the current automatic skin diagnosis studies being used in real clinical settings in the near future.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] The future of skin cancer diagnosis: a comprehensive systematic literature review of machine learning and deep learning models
    Adamu, Shamsuddeen
    Alhussian, Hitham
    Aziz, Norshakirah
    Abdulkadir, Said Jadid
    Alwadin, Ayed
    Imam, Abdullahi Abubakar
    Abdullahi, Mujaheed
    Garba, Aliyu
    Saidu, Yahaya
    COGENT ENGINEERING, 2024, 11 (01):
  • [23] Machine learning for image analysis in the cervical spine: Systematic review of the available models and methods
    Goedmakers, C. M. W.
    Pereboom, L. M.
    Schoones, J. W.
    den Bouter, M. L. de Leeuw
    Remis, R. F.
    Staring, M.
    Vleggeert-Lankamp, C. L. A.
    BRAIN AND SPINE, 2022, 2
  • [24] Polycystic Ovary Syndrome (PCOS) diagnostic methods in machine learning: a systematic literature review
    Shikha Arora
    Naresh Vedpal
    undefined Chauhan
    Multimedia Tools and Applications, 2025, 84 (16) : 16301 - 16337
  • [25] Trends in Machine and Deep Learning Techniques for Plant Disease Identification: A Systematic Review
    Rodriguez-Lira, Diana-Carmen
    Cordova-Esparza, Diana-Margarita
    alvarez-Alvarado, Jose M.
    Terven, Juan
    Romero-Gonzalez, Julio-Alejandro
    Rodriguez-Resendiz, Juvenal
    AGRICULTURE-BASEL, 2024, 14 (12):
  • [26] Recognition of Urdu sign language: a systematic review of the machine learning classification
    Zahid, Hira
    Rashid, Munaf
    Hussain, Samreen
    Azim, Fahad
    Syed, Sidra Abid
    Saad, Afshan
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [27] A Systematic Literature Review on Machine Learning and Deep Learning Methods for Semantic Segmentation
    Sohail, Ali
    Nawaz, Naeem A. A.
    Shah, Asghar Ali
    Rasheed, Saim
    Ilyas, Sheeba
    Ehsan, Muhammad Khurram
    IEEE ACCESS, 2022, 10 : 134557 - 134570
  • [28] A systematic literature review on the significance of deep learning and machine learning in predicting Alzheimer's disease
    Kaur, Arshdeep
    Mittal, Meenakshi
    Bhatti, Jasvinder Singh
    Thareja, Suresh
    Singh, Satwinder
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [29] A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer's disease
    Arya, Akhilesh Deep
    Verma, Sourabh Singh
    Chakarabarti, Prasun
    Chakrabarti, Tulika
    Elngar, Ahmed A.
    Kamali, Ali-Mohammad
    Nami, Mohammad
    BRAIN INFORMATICS, 2023, 10 (01)
  • [30] OPPORTUNITIES AND CHALLENGES OF MACHINE LEARNING AND DEEP LEARNING TECHNIQUES IN CARDIOVASCULAR DISEASE PREDICTION: A SYSTEMATIC REVIEW
    Omkari, D. Yaso
    Shinde, Snehal B. B.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2023, 31 (02) : 309 - 344