The spinorial energy for asymptotically Euclidean Ricci flow

被引:0
|
作者
Baldauf, Julius [1 ]
Ozuch, Tristan [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Ricci flow; spin geometry; ADM mass; weighted manifold; MASS; PROOF;
D O I
10.1515/ans-2022-0045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article introduces a functional generalizing Perelman's weighted Hilbert-Einstein action and the Dirichlet energy for spinors. It is well defined on a wide class of noncompact manifolds; on asymptotically Euclidean manifolds, the functional is shown to admit a unique critical point, which is necessarily of min-max type, and the Ricci flow is its gradient flow. The proof is based on variational formulas for weighted spinorial functionals, valid on all spin manifolds with boundary.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A note on the extension of Ricci flow
    Guoqiang Wu
    Jiaogen Zhang
    Geometriae Dedicata, 2022, 216
  • [32] THE RICCI-BOURGUIGNON FLOW
    Catino, Giovanni
    Cremaschi, Laura
    Djadli, Zindine
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (02) : 337 - 370
  • [33] Ricci flow of homogeneous manifolds
    Jorge Lauret
    Mathematische Zeitschrift, 2013, 274 : 373 - 403
  • [34] Ricci flow on contact manifolds
    Pirhadi, V.
    Razavi, A.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (05) : 912 - 921
  • [35] Renormalization Group and the Ricci Flow
    Mauro Carfora
    Milan Journal of Mathematics, 2010, 78 : 319 - 353
  • [36] Renormalization Group and the Ricci Flow
    Carfora, Mauro
    MILAN JOURNAL OF MATHEMATICS, 2010, 78 (01) : 319 - 353
  • [37] A note on the extension of Ricci flow
    Wu, Guoqiang
    Zhang, Jiaogen
    GEOMETRIAE DEDICATA, 2022, 216 (03)
  • [38] Deep learning as Ricci flow
    Baptista, Anthony
    Barp, Alessandro
    Chakraborti, Tapabrata
    Harbron, Chris
    Macarthur, Ben D.
    Banerji, Christopher R. S.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [39] Ricci flow on cone surfaces
    Ramos, Daniel
    PORTUGALIAE MATHEMATICA, 2018, 75 (01) : 11 - 65
  • [40] Some Topics in the Ricci Flow
    Chen, Xiuxiong
    Wang, Bing
    JOURNAL OF MATHEMATICAL STUDY, 2024, 57 (03) : 379 - 397