The spinorial energy for asymptotically Euclidean Ricci flow

被引:0
|
作者
Baldauf, Julius [1 ]
Ozuch, Tristan [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Ricci flow; spin geometry; ADM mass; weighted manifold; MASS; PROOF;
D O I
10.1515/ans-2022-0045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article introduces a functional generalizing Perelman's weighted Hilbert-Einstein action and the Dirichlet energy for spinors. It is well defined on a wide class of noncompact manifolds; on asymptotically Euclidean manifolds, the functional is shown to admit a unique critical point, which is necessarily of min-max type, and the Ricci flow is its gradient flow. The proof is based on variational formulas for weighted spinorial functionals, valid on all spin manifolds with boundary.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] THE RICCI FLOW FOR NILMANIFOLDS
    Payne, Tracy L.
    JOURNAL OF MODERN DYNAMICS, 2010, 4 (01) : 65 - 90
  • [22] On the Uniqueness of Ricci Flow
    Lee, Man-Chun
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (04) : 3098 - 3112
  • [23] Constructing Lifshitz spaces using the Ricci flow
    Cartas-Fuentevilla, R.
    Herrera-Aguilar, A.
    Herrera-Mendoza, J. A.
    ANNALS OF PHYSICS, 2020, 415
  • [24] A MECHANICS FOR THE RICCI FLOW
    Abraham, S.
    Fernandez De Cordoba, P.
    Isidro, Jose M.
    Santander, J. L. G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (05) : 759 - 767
  • [25] Stability of compact Ricci solitons under Ricci flow
    Vaghef, Mina
    Razavi, Asadollah
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (04) : 490 - 500
  • [26] RICCI LOWER BOUND FOR KAHLER-RICCI FLOW
    Zhang, Zhou
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (02)
  • [27] Singular Ricci Solitons and Their Stability under the Ricci Flow
    Alexakis, Spyros
    Chen, Dezhong
    Fournodavlos, Grigorios
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (12) : 2123 - 2172
  • [28] Parabolic Frequency Monotonicity on Ricci Flow and Ricci-Harmonic Flow with Bounded Curvatures
    Li, Chuanhuan
    Li, Yi
    Xu, Kairui
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)
  • [29] Parabolic Frequency Monotonicity on Ricci Flow and Ricci-Harmonic Flow with Bounded Curvatures
    Chuanhuan Li
    Yi Li
    Kairui Xu
    The Journal of Geometric Analysis, 2023, 33
  • [30] ON THE SHANNON ENTROPY POWER ON RIEMANNIAN MANIFOLDS AND RICCI FLOW
    Li, Songzi
    Li, Xiang-dong
    TOHOKU MATHEMATICAL JOURNAL, 2024, 76 (04) : 577 - 608