The spinorial energy for asymptotically Euclidean Ricci flow

被引:0
|
作者
Baldauf, Julius [1 ]
Ozuch, Tristan [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Ricci flow; spin geometry; ADM mass; weighted manifold; MASS; PROOF;
D O I
10.1515/ans-2022-0045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article introduces a functional generalizing Perelman's weighted Hilbert-Einstein action and the Dirichlet energy for spinors. It is well defined on a wide class of noncompact manifolds; on asymptotically Euclidean manifolds, the functional is shown to admit a unique critical point, which is necessarily of min-max type, and the Ricci flow is its gradient flow. The proof is based on variational formulas for weighted spinorial functionals, valid on all spin manifolds with boundary.
引用
收藏
页数:22
相关论文
共 50 条