On consistency and sparsity for high-dimensional functional time series with to

被引:6
|
作者
Guo, Shaojun [1 ]
Qiao, Xinghao [2 ]
机构
[1] Renmin Univ China, Inst Stat & Big Data, Beijing 100872, Peoples R China
[2] London Sch Econ, Dept Stat, London WC2A 2AE, England
基金
中国国家自然科学基金;
关键词
Functional principal component analysis; functional stability measure; high-dimensional functional time series; non-asymptotics; sparsity; vector functional autoregression; REGRESSION; INEQUALITIES; GUARANTEES; LASSO; NOISY; MODEL;
D O I
10.3150/22-BEJ1464
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Modelling a large collection of functional time series arises in a broad spectral of real applications. Under such a scenario, not only the number of functional variables can be diverging with, or even larger than the number of temporally dependent functional observations, but each function itself is an infinite-dimensional object, posing a challenging task. In this paper, we propose a three-step procedure to estimate high-dimensional functional time series models. To provide theoretical guarantees for the three-step procedure, we focus on multivariate stationary processes and propose a novel functional stability measure based on their spectral properties. Such stability measure facilitates the development of some useful concentration bounds on sample (auto)covariance functions, which serve as a fundamental tool for further convergence analysis in high-dimensional settings. As functional principal component analysis (FPCA) is one of the key dimension reduction techniques in the first step, we also investigate the non-asymptotic properties of the relevant estimated terms under a FPCA framework. To illustrate with an important application, we consider vector functional autoregressive models and develop a regularization approach to estimate autoregressive coefficient functions under the sparsity constraint. Using our derived non-asymptotic results, we investigate convergence properties of the regularized estimate under high-dimensional scaling. Finally, the finite-sample performance of the proposed method is examined through both simulations and a public financial dataset.
引用
收藏
页码:451 / 472
页数:22
相关论文
共 50 条
  • [21] Simultaneous inference for high-dimensional time series
    Shumway, RH
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 110 - 110
  • [22] Estimation of latent factors for high-dimensional time series
    Lam, Clifford
    Yao, Qiwei
    Bathia, Neil
    BIOMETRIKA, 2011, 98 (04) : 901 - 918
  • [23] Sliced inverse regression for high-dimensional time series
    Becker, C
    Fried, R
    EXPLORATORY DATA ANALYSIS IN EMPIRICAL RESEARCH, PROCEEDINGS, 2003, : 3 - 11
  • [24] High-Dimensional Multivariate Time Series With Additional Structure
    Schweinberger, Michael
    Babkin, Sergii
    Ensor, Katherine B.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (03) : 610 - 622
  • [25] Determining the number of factors for high-dimensional time series
    Xia, Qiang
    Liang, Rubing
    Wu, Jianhong
    Wong, Heung
    STATISTICS AND ITS INTERFACE, 2018, 11 (02) : 307 - 316
  • [26] Clustering High-Dimensional Time Series Based on Parallelism
    Zhang, Ting
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (502) : 577 - 588
  • [27] High-Dimensional Knockoffs Inference for Time Series Data
    Chi, Chien-Ming
    Fan, Yingying
    Ing, Ching-Kang
    Lv, Jinchi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2025,
  • [28] Factor Modeling for Clustering High-Dimensional Time Series
    Zhang, Bo
    Pan, Guangming
    Yao, Qiwei
    Zhou, Wang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1252 - 1263
  • [29] Threshold factor models for high-dimensional time series
    Liu, Xialu
    Chen, Rong
    JOURNAL OF ECONOMETRICS, 2020, 216 (01) : 53 - 70
  • [30] Consistent causal inference for high-dimensional time series
    Cordoni, Francesco
    Sancetta, Alessio
    JOURNAL OF ECONOMETRICS, 2024, 246 (1-2)