Kinetics, isotherms, and mechanism of removing cationic and anionic dyes from aqueous solutions using chitosan/magnetite/silver nanoparticles

被引:44
作者
Abdelaziz, Mahmoud A. [1 ]
Owda, Medhat E. [2 ]
Abouzeid, Ragab E. [3 ]
Alaysuy, Omaymah [1 ]
Mohamed, ELsiddig Idriss [4 ,5 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Chem, Tabuk, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Chem Dept, Nasr City 11884, Cairo, Egypt
[3] Natl Res Ctr, Cellulose & Paper Dept, 33 Bohouth St, Dokki 12622, Giza, Egypt
[4] Univ Tabuk, Fac Sci, Dept Stat, Tabuk, Saudi Arabia
[5] Sudan Univ Sci & Technol, Dept Stat, ELbladia Rd, Khartoum 407, Sudan
关键词
Chitosan; Magnetite; Silver nanoparticle; Adsorption; Dyes; CHITOSAN; ADSORPTION; NANOTUBES; COMPOSITE; CARBON; METAL;
D O I
10.1016/j.ijbiomac.2022.11.203
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modified magnetite chitosan with silver nanoparticles was synthesized and tested for removing cationic and anionic dyes in aqueous solutions. Initial dye concentration, pH, and contact time were examined. Results showed that pH (4.0) was optimal for removing anionic dyes (methyl orange) and pH 8.0 for removing cationic dyes (methylene blue). According to these results, zeta potentials were found to be 8.43 and - 39.17 mV at pH 4.0 and 8.0, respectively. So, it is attracted to positively charged cationic dyes in an alkaline medium and negatively charged anionic dyes in an acidic medium because of their opposite charges. Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X- ray diffraction (XRD), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA), and zeta potential measurements were used to characterize the synthesized nanosorbents. A pseudo-second-order kinetic model is fitted with the Langmuir adsorption model, with an adsorption capacity of 417 and 476 mg/g for methyl orange and methylene blue, respectively. For both dyes, modified magnetite chitosan with silver nanoparticles showed high regeneration capability and recovery for up to four cycles without adsorption efficiency loss. Furthermore, modified magnetite chitosan with silver nanoparticles, as prepared in the present study, was demonstrated to be an effective adsorbent for organic pollutants in wastewater.
引用
收藏
页码:1462 / 1475
页数:14
相关论文
共 48 条
[1]   Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal [J].
Abbasi, Mahmoud .
JOURNAL OF CLEANER PRODUCTION, 2017, 145 :105-113
[2]   Effective adsorption of cationic methylene blue dye on cellulose nanofiber/graphene oxide/silica nanocomposite: Kinetics and equilibrium [J].
Abouzeid, Ragab E. ;
Owda, Medhat E. ;
Dacrory, Sawsan .
JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (25)
[3]   Application of cress seed musilage magnetic nanocomposites for removal of methylene blue dye from water [J].
Allafchian, Alireza ;
Mousavi, Zahra Sadat ;
Hosseini, Seyed Sajjad .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 136 :199-208
[4]   Functionalization of Magnetite Nanoparticles as Oil Spill Collector [J].
Atta, Ayman M. ;
Al-Lohedan, Hamad A. ;
Al-Hussain, Sami A. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (04) :6911-6931
[5]   Magnetic chitosan biopolymer as a versatile adsorbent for simultaneous and synergistic removal of different sorts of dyestuffs from simulated wastewater [J].
Chen, Bo ;
Long, Fengxia ;
Chen, Sijiang ;
Cao, Yangrui ;
Pan, Xuejun .
CHEMICAL ENGINEERING JOURNAL, 2020, 385
[6]   Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal [J].
Chen Yuwei ;
Wang Jianlong .
CHEMICAL ENGINEERING JOURNAL, 2011, 168 (01) :286-292
[7]  
Cho DW, 2015, J IND ENG CHEM, V28, P60
[8]   Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications [J].
Feng, Peipei ;
Luo, Yang ;
Ke, Chunhai ;
Qiu, Haofeng ;
Wang, Wei ;
Zhu, Yabin ;
Hou, Ruixia ;
Xu, Long ;
Wu, Songze .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
[9]  
Freundlich H, 1906, Z PHYS CHEM-STOCH VE, V57, P385
[10]   Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide [J].
Gao, Yuan ;
Li, Yan ;
Zhang, Liang ;
Huang, Hui ;
Hu, Junjie ;
Shah, Syed Mazhar ;
Su, Xingguang .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 368 :540-546