An ensemble Monte Carlo HDG method for parabolic PDEs with random coefficients

被引:3
|
作者
Li, Meng [1 ]
Luo, Xianbing [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic PDEs; random coefficients; HDG method; ensemble; Monte Carlo; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; ERROR ANALYSIS; ALGORITHM; GALERKIN; SCHEME; GMRES;
D O I
10.1080/00207160.2022.2119082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Monte Carlo, ensemble and hybrid discontinuous Galerkin method (EMC-HDG) to numerically solve parabolic partial differential equations (PDEs) with random coefficients. The proposed method reduces the computational cost and the storage requirement by solving multiple linear systems with a common coefficient matrix. Error analysis shows the proposed method is first-order accurate in time and optimal L-2 convergence order in physical space. In the end, several numerical experiments are presented to verify the theoretical results.
引用
收藏
页码:405 / 421
页数:17
相关论文
共 50 条
  • [41] ON LOCAL FOURIER ANALYSIS OF MULTIGRID METHODS FOR PDEs WITH JUMPING AND RANDOM COEFFICIENTS
    Kumar, Prashant
    Rodrigo, Carmen
    Gaspar, Francisco J.
    Oosterlee, Cornelis W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03) : A1385 - A1413
  • [42] HDG Method for Nonlinear Parabolic Integro-Differential Equations
    Jain, Riya
    Yadav, Sangita
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2025, 25 (01) : 115 - 131
  • [43] An MLMCE-HDG method for the convection diffusion equation with random diffusivity
    Li, Meng
    Luo, Xianbing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 127 : 127 - 143
  • [44] HDG method for linear parabolic integro-Differential equations
    Jain, Riya
    Pani, Amiya K.
    Yadav, Sangita
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 450
  • [45] Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a review
    Turner, C. Heath
    Brennan, John K.
    Lisal, Martin
    Smith, William R.
    Johnson, J. Karl
    Gubbins, Keith E.
    MOLECULAR SIMULATION, 2008, 34 (02) : 119 - 146
  • [46] MG/OPT AND MULTILEVEL MONTE CARLO FOR ROBUST OPTIMIZATION OF PDEs
    Van Barel, Andreas
    Vandewalle, Stefan
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 1850 - 1876
  • [47] Random vibration analysis of switching apparatus based on Monte Carlo method
    Zhai, Guofu
    Chen, Yinghua
    Ren, Wanbin
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON RELIABILITY OF ELECTRICAL PRODUCTS AND ELECTRICAL CONTACTS, 2007, : 127 - 130
  • [48] MULTILEVEL MONTE CARLO METHODS FOR STOCHASTIC ELLIPTIC MULTISCALE PDES
    Abdulle, Assyr
    Barth, Andrea
    Schwab, Christoph
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04) : 1033 - 1070
  • [49] An investigation on determination of attenuation coefficients for gamma-rays by Monte Carlo method
    O. Gurler
    U. Akar Tarim
    Journal of Radioanalytical and Nuclear Chemistry, 2012, 293 : 397 - 401
  • [50] An investigation on determination of attenuation coefficients for gamma-rays by Monte Carlo method
    Gurler, O.
    Tarim, U. Akar
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2012, 293 (01) : 397 - 401