Graph-Based Semi-Supervised Deep Image Clustering With Adaptive Adjacency Matrix

被引:0
|
作者
Ding, Shifei [1 ,2 ]
Hou, Haiwei [1 ]
Xu, Xiao [1 ]
Zhang, Jian [1 ]
Guo, Lili [1 ]
Ding, Ling [3 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Minist Educ, Mine Digitizat Engn Res Ctr, Xuzhou 221116, Peoples R China
[3] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Semisupervised learning; Neural networks; Manifolds; Kernel; Training; Task analysis; Deep clustering; image clustering; representation learning; semi-supervised learning;
D O I
10.1109/TNNLS.2024.3367322
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image clustering is a research hotspot in machine learning and computer vision. Existing graph-based semi-supervised deep clustering methods suffer from three problems: 1) because clustering uses only high-level features, the detailed information contained in shallow-level features is ignored; 2) most feature extraction networks employ the step odd convolutional kernel, which results in an uneven distribution of receptive field intensity; and 3) because the adjacency matrix is precomputed and fixed, it cannot adapt to changes in the relationship between samples. To solve the above problems, we propose a novel graph-based semi-supervised deep clustering method for image clustering. First, the parity cross-convolutional feature extraction and fusion module is used to extract high-quality image features. Then, the clustering constraint layer is designed to improve the clustering efficiency. And, the output layer is customized to achieve unsupervised regularization training. Finally, the adjacency matrix is inferred by actual network prediction. A graph-based regularization method is adopted for unsupervised training networks. Experimental results show that our method significantly outperforms state-of-the-art methods on USPS, MNIST, street view house numbers (SVHN), and fashion MNIST (FMNIST) datasets in terms of ACC, normalized mutual information (NMI), and ARI.
引用
收藏
页码:18828 / 18837
页数:10
相关论文
共 50 条
  • [31] A review on graph-based semi-supervised learning methods for hyperspectral image classification
    Sawant, Shrutika S.
    Prabukumar, Manoharan
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2020, 23 (02): : 243 - 248
  • [32] Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
    Wang, Yifan
    Huang, Yan
    Wang, Qicong
    Zhao, Chong
    Zhang, Zhenchang
    Chen, Jian
    SENSORS, 2023, 23 (08)
  • [33] GRAPH-BASED SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION USING SPATIAL INFORMATION
    Jamshidpour, Nasehe
    Homayouni, Saeid
    Safari, Abdolreza
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [34] GRAPH-BASED SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION USING SPATIAL INFORMATION
    Jamshidpour, N.
    Homayouni, S.
    Safari, A.
    ISPRS INTERNATIONAL JOINT CONFERENCES OF THE 2ND GEOSPATIAL INFORMATION RESEARCH (GI RESEARCH 2017); THE 4TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING (SMPR 2017); THE 6TH EARTH OBSERVATION OF ENVIRONMENTAL CHANGES (EOEC 2017), 2017, 42-4 (W4): : 91 - 96
  • [35] Semi-supervised non-negative matrix factorization for image clustering with graph Laplacian
    He, Yangcheng
    Lu, Hongtao
    Xie, Saining
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 72 (02) : 1441 - 1463
  • [36] Semi-supervised non-negative matrix factorization for image clustering with graph Laplacian
    Yangcheng He
    Hongtao Lu
    Saining Xie
    Multimedia Tools and Applications, 2014, 72 : 1441 - 1463
  • [37] Graph-based Semi-supervised Classification with CRF and RNN
    Ye, Zhili
    Du, Yang
    Wu, Fengge
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 403 - 408
  • [38] Generalization performance of graph-based semi-supervised classification
    Hong Chen
    LuoQing Li
    Science in China Series A: Mathematics, 2009, 52 : 2506 - 2516
  • [39] Graph-based semi-supervised learning with multiple labels
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2009, 20 (02) : 97 - 103
  • [40] Graph-Based Semi-Supervised Learning: A Comprehensive Review
    Song, Zixing
    Yang, Xiangli
    Xu, Zenglin
    King, Irwin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8174 - 8194