Graph-Based Semi-Supervised Deep Image Clustering With Adaptive Adjacency Matrix

被引:0
|
作者
Ding, Shifei [1 ,2 ]
Hou, Haiwei [1 ]
Xu, Xiao [1 ]
Zhang, Jian [1 ]
Guo, Lili [1 ]
Ding, Ling [3 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Minist Educ, Mine Digitizat Engn Res Ctr, Xuzhou 221116, Peoples R China
[3] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Semisupervised learning; Neural networks; Manifolds; Kernel; Training; Task analysis; Deep clustering; image clustering; representation learning; semi-supervised learning;
D O I
10.1109/TNNLS.2024.3367322
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image clustering is a research hotspot in machine learning and computer vision. Existing graph-based semi-supervised deep clustering methods suffer from three problems: 1) because clustering uses only high-level features, the detailed information contained in shallow-level features is ignored; 2) most feature extraction networks employ the step odd convolutional kernel, which results in an uneven distribution of receptive field intensity; and 3) because the adjacency matrix is precomputed and fixed, it cannot adapt to changes in the relationship between samples. To solve the above problems, we propose a novel graph-based semi-supervised deep clustering method for image clustering. First, the parity cross-convolutional feature extraction and fusion module is used to extract high-quality image features. Then, the clustering constraint layer is designed to improve the clustering efficiency. And, the output layer is customized to achieve unsupervised regularization training. Finally, the adjacency matrix is inferred by actual network prediction. A graph-based regularization method is adopted for unsupervised training networks. Experimental results show that our method significantly outperforms state-of-the-art methods on USPS, MNIST, street view house numbers (SVHN), and fashion MNIST (FMNIST) datasets in terms of ACC, normalized mutual information (NMI), and ARI.
引用
收藏
页码:18828 / 18837
页数:10
相关论文
共 50 条
  • [1] Matrix Completion for Graph-Based Deep Semi-Supervised Learning
    Taherkhani, Fariborz
    Kazemi, Hadi
    Nasrabadi, Nasser M.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5058 - 5065
  • [2] A Graph-Based Projection Approach for Semi-supervised Clustering
    Yoshida, Tetsuya
    Okatani, Kazuhiro
    KNOWLEDGE MANAGEMENT AND ACQUISITION FOR SMART SYSTEMS AND SERVICES, 2010, 6232 : 1 - 13
  • [3] Graph-based multimodal semi-supervised image classification
    Xie, Wenxuan
    Lu, Zhiwu
    Peng, Yuxin
    Xiao, Jianguo
    NEUROCOMPUTING, 2014, 138 : 167 - 179
  • [4] Semi-supervised graph-based hyperspectral image classification
    Camps-Valls, Gustavo
    Bandos, Tatyana V.
    Zhou, Dengyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10): : 3044 - 3054
  • [5] Pairwise Constraint Propagation for Graph-Based Semi-supervised Clustering
    Yoshida, Tetsuya
    FOUNDATIONS OF INTELLIGENT SYSTEMS, 2011, 6804 : 358 - 364
  • [6] Performance Evaluation of Constraints in Graph-Based Semi-supervised Clustering
    Yoshida, Tetsuya
    ACTIVE MEDIA TECHNOLOGY, 2010, 6335 : 138 - 149
  • [7] Adaptive Hybrid Representation for Graph-Based Semi-supervised Classification
    Dornaika, F.
    Bosaghzadeh, A.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT I, 2019, 11751 : 164 - 174
  • [8] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [9] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [10] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    Artificial Life and Robotics, 2009, 14 (4) : 445 - 448