A machine learning and deep learning-based integrated multi-omics technique for leukemia prediction

被引:14
作者
Abbasi, Erum Yousef [1 ]
Deng, Zhongliang [1 ]
Ali, Qasim [2 ]
Khan, Adil [1 ]
Shaikh, Asadullah [3 ]
Al Reshan, Mana Saleh [3 ,4 ]
Sulaiman, Adel [5 ]
Alshahrani, Hani [5 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, State Key Lab Wireless Network Positioning & Commu, Beijing, Peoples R China
[2] Mehran Univ Engn & Technol, Dept Software Engn, Jamshoro, Pakistan
[3] Najran Univ, Coll Comp Sci & Informat Syst, Dept Informat Syst, Najran 61441, Saudi Arabia
[4] Najran Univ, Sci & Engn Res Ctr, Najran 61441, Saudi Arabia
[5] Najran Univ, Coll Comp Sci & Informat Syst, Dept Comp Sci, Najran 61441, Saudi Arabia
关键词
Multi-omics; Genomics; Machine learning; Deep learning; Leukemia; DIAGNOSTIC CLASSIFICATION; NEURAL-NETWORKS; CANCERS;
D O I
10.1016/j.heliyon.2024.e25369
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, scientific data on cancer has expanded, providing potential for a better understanding of malignancies and improved tailored care. Advances in Artificial Intelligence (AI) processing power and algorithmic development position Machine Learning (ML) and Deep Learning (DL) as crucial players in predicting Leukemia, a blood cancer, using integrated multiomics technology. However, realizing these goals demands novel approaches to harness this data deluge. This study introduces a novel Leukemia diagnosis approach, analyzing multi-omics data for accuracy using ML and DL algorithms. ML techniques, including Random Forest (RF), Naive Bayes (NB), Decision Tree (DT), Logistic Regression (LR), Gradient Boosting (GB), and DL methods such as Recurrent Neural Networks (RNN) and Feedforward Neural Networks (FNN) are compared. GB achieved 97 % accuracy in ML, while RNN outperformed by achieving 98 % accuracy in DL. This approach filters unclassified data effectively, demonstrating the significance of DL for leukemia prediction. The testing validation was based on 17 different features such as patient age, sex, mutation type, treatment methods, chromosomes, and others. Our study compares ML and DL techniques and chooses the best technique that gives optimum results. The study emphasizes the implications of high-throughput technology in healthcare, offering improved patient care.
引用
收藏
页数:23
相关论文
共 93 条
[1]   A new efficient algorithm based on feedforward neural network for solving differential equations of fractional order [J].
Admon, Mohd Rashid ;
Senu, Norazak ;
Ahmadian, Ali ;
Majid, Zanariah Abdul ;
Salahshour, Soheil .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
[2]  
Agarap A. F., 2018, arXiv, DOI DOI 10.48550/ARXIV.1803.08375
[3]  
Aggarwal Meenakshi, 2022, 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), P1, DOI 10.1109/ICRITO56286.2022.9965113
[4]  
Aggarwal M., 2023, P 3 INT C INN PRACT, P1, DOI [10.1109/ICIPTM57143.2023.10117854, DOI 10.1109/ICIPTM57143.2023.10117854]
[5]   Feature selection methods on gene expression microarray data for cancer classification: A systematic review [J].
Alhenawi, Esra'a ;
Al-Sayyed, Rizik ;
Hudaib, Amjad ;
Mirjalili, Seyedali .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
[6]   Multi-omics Data Integration Model based on Isomap and Convolutional Neural Network [J].
Alkhateeb, Abedalrhman ;
ElKarami, Bashier ;
Qattous, Hazem ;
Al-refai, Abdullah ;
AlAfeshat, Noor ;
Shahrrava, Behnam ;
Azzeh, Mohammad .
2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, :1381-1385
[7]   Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models [J].
Allesoe, Rosa Lundbye ;
Lundgaard, Agnete Troen ;
Medina, Ricardo Hernandez ;
Aguayo-Orozco, Alejandro ;
Johansen, Joachim ;
Nissen, Jakob Nybo ;
Brorsson, Caroline ;
Mazzoni, Gianluca ;
Niu, Lili ;
Biel, Jorge Hernansanz ;
Brasas, Valentas ;
Webel, Henry ;
Benros, Michael Eriksen ;
Pedersen, Anders Gorm ;
Chmura, Piotr Jaroslaw ;
Jacobsen, Ulrik Plesner ;
Mari, Andrea ;
Koivula, Robert ;
Mahajan, Anubha ;
Vinuela, Ana ;
Tajes, Juan Fernandez ;
Sharma, Sapna ;
Haid, Mark ;
Hong, Mun-Gwan ;
Musholt, Petra B. ;
De Masi, Federico ;
Vogt, Josef ;
Pedersen, Helle Krogh ;
Gudmundsdottir, Valborg ;
Jones, Angus ;
Kennedy, Gwen ;
Bell, Jimmy ;
Thomas, E. Louise ;
Frost, Gary ;
Thomsen, Henrik ;
Hansen, Elizaveta ;
Hansen, Tue Haldor ;
Vestergaard, Henrik ;
Muilwijk, Mirthe ;
Blom, Marieke T. ;
Hart, Leen M. T. ;
Pattou, Francois ;
Raverdy, Violeta ;
Brage, Soren ;
Kokkola, Tarja ;
Heggie, Alison ;
McEvoy, Donna ;
Mourby, Miranda ;
Kaye, Jane ;
Hattersley, Andrew .
NATURE BIOTECHNOLOGY, 2023, 41 (03) :399-+
[8]   A Recurrent Neural Network model to predict blood-brain barrier permeability [J].
Alsenan, Shrooq ;
Al-Turaiki, Isra ;
Hafez, Alaaeldin .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 89
[9]  
[Anonymous], ICGC Data Portal, a public repository
[10]  
Araaf M.A., 2023, Journal of Computing Theories and Applications, V1, P31, DOI [10.33633/jcta.v1i1.9185, DOI 10.33633/JCTA.V1I1.9185]