Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning

被引:22
作者
Wu, Jingyue [1 ]
Singleton, Stephanie S. [1 ]
Bhuiyan, Urnisha [1 ]
Krammer, Lori [1 ,2 ]
Mazumder, Raja [1 ,3 ]
机构
[1] George Washington Univ, Sch Med & Hlth Sci, Dept Biochem & Mol Med, Washington, DC 20052 USA
[2] George Washington Univ, Milken Inst, Sch Publ Hlth, Washington, DC USA
[3] George Washington Univ, McCormick Genom & Prote Ctr, Washington, DC 20052 USA
关键词
precision medicine; machine learning; gut microbiome; metagenomics; multi-omics; sequencing; biomarkers; DIET; ALIGNMENT; BACTERIA; SHOTGUN; GENOMES;
D O I
10.3389/fmolb.2023.1337373
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human gastrointestinal (gut) microbiome plays a critical role in maintaining host health and has been increasingly recognized as an important factor in precision medicine. High-throughput sequencing technologies have revolutionized -omics data generation, facilitating the characterization of the human gut microbiome with exceptional resolution. The analysis of various -omics data, including metatranscriptomics, metagenomics, glycomics, and metabolomics, holds potential for personalized therapies by revealing information about functional genes, microbial composition, glycans, and metabolites. This multi-omics approach has not only provided insights into the role of the gut microbiome in various diseases but has also facilitated the identification of microbial biomarkers for diagnosis, prognosis, and treatment. Machine learning algorithms have emerged as powerful tools for extracting meaningful insights from complex datasets, and more recently have been applied to metagenomics data via efficiently identifying microbial signatures, predicting disease states, and determining potential therapeutic targets. Despite these rapid advancements, several challenges remain, such as key knowledge gaps, algorithm selection, and bioinformatics software parametrization. In this mini-review, our primary focus is metagenomics, while recognizing that other -omics can enhance our understanding of the functional diversity of organisms and how they interact with the host. We aim to explore the current intersection of multi-omics, precision medicine, and machine learning in advancing our understanding of the gut microbiome. A multidisciplinary approach holds promise for improving patient outcomes in the era of precision medicine, as we unravel the intricate interactions between the microbiome and human health.
引用
收藏
页数:8
相关论文
共 98 条
[1]   Pre-Transplant Fecal Microbial Diversity Independently Predicts Critical Illness after Hematopoietic Cell Transplantation [J].
Adhi, Fatima I. ;
Littmann, Eric R. ;
Taur, Ying ;
Maloy, Molly A. ;
Markey, Kate A. ;
Fontana, Emily ;
Amoretti, Luigi A. ;
Wright, Roberta ;
Sanchez-Escamilla, Miriam ;
Flores, Nerea Castillo ;
Tomas, Ana Alarcon ;
Lin, Richard J. ;
Yanez, Lucrecia ;
Brereton, Daniel ;
Clurman, Annelie ;
Slingerland, John B. ;
Shah, Gunjan L. ;
Cho, Christina ;
Scordo, Michael ;
Politikos, Ioannis ;
Gyurkocza, Boglarka ;
Ponce, Doris M. ;
Barker, Juliet ;
Perales, Miguel-Angel ;
Giralt, Sergio A. ;
van den Brink, Marcel R. M. ;
Pamer, Eric G. ;
Peled, Jonathan U. .
BLOOD, 2019, 134
[2]   Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson's disease [J].
Aho, Velma T. E. ;
Houser, Madelyn C. ;
Pereira, Pedro A. B. ;
Chang, Jianjun ;
Rudi, Knut ;
Paulin, Lars ;
Hertzberg, Vicki ;
Auvinen, Petri ;
Tansey, Malu G. ;
Scheperjans, Filip .
MOLECULAR NEURODEGENERATION, 2021, 16 (01)
[3]   Technology dictates algorithms: recent developments in read alignment [J].
Alser, Mohammed ;
Rotman, Jeremy ;
Deshpande, Dhrithi ;
Taraszka, Kodi ;
Shi, Huwenbo ;
Baykal, Pelin Icer ;
Yang, Harry Taegyun ;
Xue, Victor ;
Knyazev, Sergey ;
Singer, Benjamin D. ;
Balliu, Brunilda ;
Koslicki, David ;
Skums, Pavel ;
Zelikovsky, Alex ;
Alkan, Can ;
Mutlu, Onur ;
Mangul, Serghei .
GENOME BIOLOGY, 2021, 22 (01)
[4]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[5]   Opportunities and challenges in long-read sequencing data analysis [J].
Amarasinghe, Shanika L. ;
Su, Shian ;
Dong, Xueyi ;
Zappia, Luke ;
Ritchie, Matthew E. ;
Gouil, Quentin .
GENOME BIOLOGY, 2020, 21 (01)
[6]   Machine Learning Strategy for Gut Microbiome-Based Diagnostic Screening of Cardiovascular Disease [J].
Aryal, Sachin ;
Alimadadi, Ahmad ;
Manandhar, Ishan ;
Joe, Bina ;
Cheng, Xi .
HYPERTENSION, 2020, 76 (05) :1555-1562
[7]   Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics [J].
Athanasopoulou, Konstantina ;
Boti, Michaela A. ;
Adamopoulos, Panagiotis G. ;
Skourou, Paraskevi C. ;
Scorilas, Andreas .
LIFE-BASEL, 2022, 12 (01)
[8]   Fecal Microbial Transplant Capsules Are Safe in Hepatic Encephalopathy: A Phase 1, Randomized, Placebo-Controlled Trial [J].
Bajaj, Jasmohan S. ;
Salzman, Nita H. ;
Acharya, Chathur ;
Sterling, Richard K. ;
White, Melanie B. ;
Gavis, Edith A. ;
Fagan, Andrew ;
Hayward, Michael ;
Holtz, Mary L. ;
Matherly, Scott ;
Lee, Hannah M. ;
Osman, Majdi ;
Siddiqui, Mohammad S. ;
Fuchs, Michael ;
Puri, Puneet ;
Sikaroodi, Masoumeh ;
Gillevet, Patrick M. .
HEPATOLOGY, 2019, 70 (05) :1690-1703
[9]   SILVA, RDP, Greengenes, NCBI and OTT - how do these taxonomies compare? [J].
Balvociute, Monika ;
Huson, Daniel H. .
BMC GENOMICS, 2017, 18
[10]  
Berg G, 2020, MICROBIOME, V8, DOI 10.1186/s40168-020-00875-0