Telomere-to-telomere pear (Pyrus pyrifolia) reference genome reveals segmental and whole genome duplication driving genome evolution

被引:20
作者
Sun, Manyi [1 ,2 ]
Yao, Chenjie [1 ,2 ]
Shu, Qun [3 ]
He, Yingyun [3 ]
Chen, Guosong [1 ,2 ]
Yang, Guangyan [1 ,2 ]
Xu, Shaozhuo [1 ,2 ]
Liu, Yueyuan [1 ,2 ]
Xue, Zhaolong [1 ,2 ]
Wu, Jun [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Hort, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
[2] Zhongshan Biol Breeding Lab, 50 Zhongling St, Nanjing 210014, Jiangsu, Peoples R China
[3] Yunnan Acad Agr Sci, Inst Hort, Kunming 650205, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
MYB TRANSCRIPTION FACTORS; GENE; ALIGNMENT; TANDEM; SEQUENCE; BIOSYNTHESIS; METABOLISM; PROVIDES; SEARCH; SYSTEM;
D O I
10.1093/hr/uhad201
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Previously released pear genomes contain a plethora of gaps and unanchored genetic regions. Here, we report a telomere-to-telomere (T2T) gap-free genome for the red-skinned pear, 'Yunhong No. 1' (YH1; Pyrus pyrifolia), which is mainly cultivated in Yunnan Province (southwest China), the pear's primary region of origin. The YH1 genome is 501.20 Mb long with a contig N50 length of 29.26 Mb. All 17 chromosomes were assembled to the T2T level with 34 characterized telomeres. The 17 centromeres were predicted and mainly consist of centromeric-specific monomers (CEN198) and long terminal repeat (LTR) Gypsy elements (>= 74.73%). By filling all unclosed gaps, the integrity of YH1 is markedly improved over previous P. pyrifolia genomes ('Cuiguan' and 'Nijisseiki'). A total of 1531 segmental duplication (SD) driven duplicated genes were identified and enriched in stress response pathways. Intrachromosomal SDs drove the expansion of disease resistance genes, suggesting the potential of SDs in adaptive pear evolution. A large proportion of duplicated gene pairs exhibit dosage effects or sub-/neo-functionalization, which may affect agronomic traits like stone cell content, sugar content, and fruit skin russet. Furthermore, as core regulators of anthocyanin biosynthesis, we found that MYB10 and MYB114 underwent various gene duplication events. Multiple copies of MYB10 and MYB114 displayed obvious dosage effects, indicating role differentiation in the formation of red-skinned pear fruit. In summary, the T2T gap-free pear genome provides invaluable resources for genome evolution and functional genomics.
引用
收藏
页数:14
相关论文
共 102 条
[51]   Functional diversifications of GhERF1 duplicate genes after the formation of allotetraploid cotton [J].
Liu, Chunxiao ;
Zhang, Tian Zhen .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2019, 61 (01) :60-74
[52]   DNA methylation reprogramming provides insights into light-induced anthocyanin biosynthesis in red pear [J].
Liu, Hai-Nan ;
Shu, Qun ;
Kui, Lin-Wang ;
Espley, Richard V. ;
Allan, Andrew C. ;
Pei, Mao-Song ;
Li, Xiao-Long ;
Su, Jun ;
Wu, Jun .
PLANT SCIENCE, 2023, 326 :111499
[53]   tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes [J].
Lowe, Todd M. ;
Chan, Patricia P. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W54-W57
[54]   Transcriptome Analysis of Low- and High-Sucrose Pear Cultivars Identifies Key Regulators of Sucrose Biosynthesis in Fruits [J].
Lu, Jiahong ;
Tao, Xin ;
Yao, Gaifang ;
Zhang, Shaoling ;
Zhang, Huping .
PLANT AND CELL PHYSIOLOGY, 2020, 61 (08) :1493-1506
[55]   Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice [J].
Lyu, Jun ;
Huang, Liyu ;
Zhang, Shilai ;
Zhang, Yesheng ;
He, Weiming ;
Zeng, Peng ;
Zeng, Yan ;
Huang, Guangfu ;
Zhang, Jing ;
Ning, Min ;
Bao, Yachong ;
Zhao, Shilei ;
Fu, Qi ;
Wade, Len J. ;
Chen, Hua ;
Wang, Wen ;
Hu, Fengyi .
NATURE COMMUNICATIONS, 2020, 11 (01)
[56]   TigrScan and GlimmerHMM:: two open source ab initio eukaryotic gene-finders [J].
Majoros, WH ;
Pertea, M ;
Salzberg, SL .
BIOINFORMATICS, 2004, 20 (16) :2878-2879
[57]   MUMmer4: A fast and versatile genome alignment system [J].
Marcais, Guillaume ;
Delcher, Arthur L. ;
Phillippy, Adam M. ;
Coston, Rachel ;
Salzberg, Steven L. ;
Zimin, Aleksey .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (01)
[58]   A fast, lock-free approach for efficient parallel counting of occurrences of k-mers [J].
Marcais, Guillaume ;
Kingsford, Carl .
BIOINFORMATICS, 2011, 27 (06) :764-770
[59]   IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era [J].
Minh, Bui Quang ;
Schmidt, Heiko A. ;
Chernomor, Olga ;
Schrempf, Dominik ;
Woodhams, Michael D. ;
von Haeseler, Arndt ;
Lanfear, Robert .
MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (05) :1530-1534
[60]   The genetic and epigenetic landscape of the Arabidopsis centromeres [J].
Naish, Matthew ;
Alonge, Michael ;
Wlodzimierz, Piotr ;
Tock, Andrew J. ;
Abramson, Bradley W. ;
Schmuecker, Anna ;
Mandakova, Terezie ;
Jamge, Bhagyshree ;
Lambing, Christophe ;
Kuo, Pallas ;
Yelina, Natasha ;
Hartwick, Nolan ;
Colt, Kelly ;
Smith, Lisa M. ;
Ton, Jurriaan ;
Kakutani, Tetsuji ;
Martienssen, Robert A. ;
Schneeberger, Korbinian ;
Lysak, Martin A. ;
Berger, Frederic ;
Bousios, Alexandros ;
Michael, Todd P. ;
Schatz, Michael C. ;
Henderson, Ian R. .
SCIENCE, 2021, 374 (6569) :840-+