Enhancement of energy decomposition analysis in fragment molecular orbital calculations

被引:4
|
作者
Matsuoka, Sota [1 ,2 ]
Sakakura, Kota [3 ]
Akinaga, Yoshinobu [4 ]
Akisawa, Kazuki [1 ,2 ]
Okuwaki, Koji [1 ,2 ,5 ]
Doi, Hideo [1 ,2 ]
Mochizuki, Yuji [1 ,2 ,6 ,7 ,8 ]
机构
[1] Rikkyo Univ, Dept Chem, Tokyo, Japan
[2] Rikkyo Univ, Fac Sci, Res Ctr Smart Mol, Tokyo, Japan
[3] Fdn Computat Sci, Kobe, Japan
[4] VINAS Co Ltd, Keihan-Doujima Bld, Osaka, Japan
[5] JSOL Corp, Kudan-Kaikan Terrace, Tokyo, Japan
[6] Univ Tokyo, Inst Ind Sci, Tokyo, Japan
[7] Rikkyo Univ, Fac Sci, Dept Chem, 3-34-1 Nishi-ikebukuro,Toshima Ku 171-8, Tokyo, Japan
[8] Rikkyo Univ, Res Ctr Smart Mol, Fac Sci, 3-34-1 Nishi-ikebukuro,Toshima Ku 171-8, Tokyo, Japan
关键词
dispersion interaction; energy decomposition analysis; fragment molecular orbital method; RESP charge; BASIS-SET; CHARGES; DNA;
D O I
10.1002/jcc.27297
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Energy decomposition analysis is one of the most attractive features of fragment molecular orbital (FMO) calculations from the point of view of practical applications. Here we report some enhancements for PIEDA in the ABINIT-MP program. One is a separation of the dispersion-type stabilization from the electron correlation energy, traditionally referred to as the "dispersion interaction" (DI). Another is an alternative evaluation of the electrostatic (ES) interaction using the restrained electrostatic potential (RESP) charges. The GA:CT stacked base pair and the Trp-Cage miniprotein were used as illustrative examples. The GA:CT stacked base pair is an illustrative example of two different types of interactions. One is the H-bond stabilized mainly by Electrostatic interaction and charge-transfer. The other is the stacking interaction dominated by dispersion. Our enhanced energy decomposition analysis helps to distinguish between the interaction types.image
引用
收藏
页码:898 / 902
页数:5
相关论文
共 50 条
  • [1] Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Nakamura, Taiji
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (06): : 1596 - 1601
  • [2] Energy Decomposition Analysis in Solution Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (01): : 704 - 719
  • [3] Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach
    Okiyama, Yoshio
    Nakano, Tatsuya
    Yamashita, Katsumi
    Mochizuki, Yuji
    Taguchi, Naoki
    Tanaka, Shigenori
    CHEMICAL PHYSICS LETTERS, 2010, 490 (1-3) : 84 - 89
  • [4] Accuracy of the fragment molecular orbital (FMO) calculations for DNA: Total energy, molecular orbital, and inter-fragment interaction energy
    Fukuzawa, Kaori
    Watanabe, Chiduru
    Kurisaki, Ikuo
    Taguchi, Naoki
    Mochizuki, Yuji
    Nakano, Tatsuya
    Tanaka, Shigenori
    Komeiji, Yuto
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2014, 1034 : 7 - 16
  • [5] Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (24): : 4956 - 4971
  • [6] Fragment molecular orbital calculations for biomolecules
    Fukuzawa, Kaori
    Tanaka, Shigenori
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 72 : 127 - 134
  • [7] Calculations of large molecular systems with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [8] Fragment-to-lead using fragment molecular orbital QM calculations
    Law, Richard J.
    Ichihara, Osamu
    Mazanetz, Michael P.
    Southey, Michelle
    Whittaker, Mark
    Hallett, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [9] Scaling Correlated Fragment Molecular Orbital Calculations on Summit
    Barca, Giuseppe M. J.
    Snowdon, Calum
    Vallejo, Jorge L. Galvez
    Kazemian, Fazeleh
    Rendell, Alistair P.
    Gordon, Mark S.
    SC22: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2022,
  • [10] MOLECULAR-ORBITAL CALCULATIONS FOR THE REACTION FRAGMENT NSN
    LAIDLAW, WG
    TRSIC, M
    INORGANIC CHEMISTRY, 1981, 20 (06) : 1792 - 1794