Sparse inference of structural equation modeling with latent variables for diffusion processes

被引:1
作者
Kusano, Shogo [1 ]
Uchida, Masayuki [1 ,2 ,3 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka, Japan
[2] Osaka Univ, Ctr Math Modeling & Data Sci MMDS, Osaka, Japan
[3] JST CREST, Osaka, Japan
关键词
Structural equation modeling; Asymptotic theory; High-frequency data; Stochastic differential equation; Quasi-maximum likelihood estimation; Sparse inference; PENALIZED LIKELIHOOD; STATISTICAL-ANALYSIS; ADAPTIVE LASSO; SELECTION; MULTIPLE;
D O I
10.1007/s42081-023-00230-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider structural equation modeling (SEM) with latent variables for diffusion processes based on high-frequency data. The quasi-likelihood estimators for parameters in the SEM are proposed. The goodness-of-fit test is derived from the quasi-likelihood ratio. We also treat sparse inference in the SEM. The goodness-of-fit test for the sparse inference in the SEM is developed. Furthermore, the asymptotic properties of our proposed estimators and test statistics are examined.
引用
收藏
页码:101 / 150
页数:50
相关论文
共 50 条
  • [41] Using Phantom Variables in Structural Equation Modeling to Assess Model Sensitivity to External Misspecification
    Harring, Jeffrey R.
    McNeish, Daniel M.
    Hancock, Gregory R.
    PSYCHOLOGICAL METHODS, 2017, 22 (04) : 616 - 631
  • [42] Latent variable modeling of scientific impact: Estimation of the Q model parameters with structural equation models
    Forthmann, Boris
    Nestler, Steffen
    QUANTITATIVE SCIENCE STUDIES, 2024, 5 (03): : 668 - 680
  • [43] A Penalized Likelihood Method for Structural Equation Modeling
    Huang, Po-Hsien
    Chen, Hung
    Weng, Li-Jen
    PSYCHOMETRIKA, 2017, 82 (02) : 329 - 354
  • [44] Latent Structure Analysis of Wet-Granulation Tableting Process Based on Structural Equation Modeling
    Katayama, Hiroki
    Itakura, Shoko
    Todo, Hiroaki
    Sugibayashi, Kenji
    Takayama, Kozo
    CHEMICAL & PHARMACEUTICAL BULLETIN, 2021, 69 (07) : 674 - 680
  • [45] Structural equation modeling of sustainable manufacturing practices
    Vinodh, S.
    Joy, Dino
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2012, 14 (01) : 79 - 84
  • [46] Estimation of Sparse Structural Parameters with Many Endogenous Variables
    Shi, Zhentao
    ECONOMETRIC REVIEWS, 2016, 35 (8-10) : 1582 - 1608
  • [47] The effect of latent and error non-normality on corrections to the test statistic in structural equation modeling
    Lisa J. Jobst
    Max Auerswald
    Morten Moshagen
    Behavior Research Methods, 2022, 54 : 2351 - 2363
  • [48] The paths from walk preference to walk behavior: Applying latent factors in structural equation modeling
    Coogan, Matthew A.
    Adler, Thomas
    Karash, Karla
    JOURNAL OF TRANSPORT AND LAND USE, 2012, 5 (03) : 68 - 82
  • [49] The effect of latent and error non-normality on corrections to the test statistic in structural equation modeling
    Jobst, Lisa J.
    Auerswald, Max
    Moshagen, Morten
    BEHAVIOR RESEARCH METHODS, 2022, 54 (05) : 2351 - 2363
  • [50] Sparse modeling of spatial environmental variables associated with asthma
    Chang, Timothy S.
    Gangnon, Ronald E.
    Page, C. David
    Buckingham, William R.
    Tandias, Aman
    Cowan, Kelly J.
    Tomasallo, Carrie D.
    Arndt, Brian G.
    Hanrahan, Lawrence P.
    Guilbert, Theresa W.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2015, 53 : 320 - 329