Sparse inference of structural equation modeling with latent variables for diffusion processes

被引:1
|
作者
Kusano, Shogo [1 ]
Uchida, Masayuki [1 ,2 ,3 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka, Japan
[2] Osaka Univ, Ctr Math Modeling & Data Sci MMDS, Osaka, Japan
[3] JST CREST, Osaka, Japan
关键词
Structural equation modeling; Asymptotic theory; High-frequency data; Stochastic differential equation; Quasi-maximum likelihood estimation; Sparse inference; PENALIZED LIKELIHOOD; STATISTICAL-ANALYSIS; ADAPTIVE LASSO; SELECTION; MULTIPLE;
D O I
10.1007/s42081-023-00230-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider structural equation modeling (SEM) with latent variables for diffusion processes based on high-frequency data. The quasi-likelihood estimators for parameters in the SEM are proposed. The goodness-of-fit test is derived from the quasi-likelihood ratio. We also treat sparse inference in the SEM. The goodness-of-fit test for the sparse inference in the SEM is developed. Furthermore, the asymptotic properties of our proposed estimators and test statistics are examined.
引用
收藏
页码:101 / 150
页数:50
相关论文
共 50 条
  • [1] Postselection Inference in Structural Equation Modeling
    Huang, Po-Hsien
    MULTIVARIATE BEHAVIORAL RESEARCH, 2020, 55 (03) : 344 - 360
  • [2] Quasi-Akaike information criterion of SEM with latent variables for diffusion processes
    Kusano, Shogo
    Uchida, Masayuki
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024,
  • [3] Latent Reciprocal Engagement and Accuracy Variables in Social Relations Structural Equation Modeling
    Jendryczko, David
    Nussbeck, Fridtjof W.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2025, 60 (01) : 115 - 137
  • [4] Measuring latent individual difference variables with a conjoint design and structural equation modeling
    Weijters, Bert
    Deltomme, Berre
    Gorissen, Karen
    Baumgartner, Hans
    MARKETING LETTERS, 2024, 35 (02) : 245 - 257
  • [5] Structural equation modeling with latent variables for longitudinal blood pressure traits using general pedigrees
    Yeunjoo E. Song
    Nathan J. Morris
    Catherine M. Stein
    BMC Proceedings, 10 (Suppl 7)
  • [6] A Renewal of Dyadic Structural Equation Modeling With Latent Variables: Clarifications, Methodological Advantages, and New Directions
    Sakaluk, John Kitchener
    Joel, Samantha
    Quinn-Nilas, Christopher
    Camanto, Omar Jordan
    Pevie, Noah William
    Tu, Eric
    Jorgensen-Wells, McKell A.
    SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS, 2025, 19 (03)
  • [7] Structural equation modeling of user satisfaction of bus transit service quality based on stated preferences and latent variables
    Hadiuzzman, Md
    Das, Tanmay
    Hasnat, Md Mehedi
    Hossain, Sanjana
    Musabbir, Sarder Rafee
    TRANSPORTATION PLANNING AND TECHNOLOGY, 2017, 40 (03) : 257 - 277
  • [8] strum: an R package for structural modeling of latent variables for general pedigrees
    Song, Yeunjoo E.
    Stein, Catherine M.
    Morris, Nathan J.
    BMC GENETICS, 2015, 16
  • [9] strum: an R package for structural modeling of latent variables for general pedigrees
    Yeunjoo E Song
    Catherine M Stein
    Nathan J Morris
    BMC Genetics, 16
  • [10] Testing mediation and suppression effects of latent variables - Bootstrapping with structural equation models
    Cheung, Gordon W.
    Lau, Rebecca S.
    ORGANIZATIONAL RESEARCH METHODS, 2008, 11 (02) : 296 - 325