Bayesian network based probabilistic weighted high-order fuzzy time series forecasting

被引:6
|
作者
Wang, Bo [1 ]
Liu, Xiaodong [1 ]
Chi, Ming [1 ]
Li, Yao [1 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Sch Control Sci & Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian network; Fuzzy time series; Fuzzy-probabilistic forecasting; Fuzzy relationship; Dependence relationship; Uncertainty modeling; ENROLLMENTS; MODEL;
D O I
10.1016/j.eswa.2023.121430
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The present article proposes a probabilistic weighted high-order fuzzy time series (FTS) forecasting model employing Bayesian network (BN) to address complex relationships and uncertainty hidden in time series. As considerable FTS forecasting models considers the fuzzy relationships between precedent moments and the consequent moment as the complex relationships in time series, BN structure learning is utilized to discover and model dependence relationships between each moment in time series. The combination of the fuzzy relationships modeled by fuzzy logical relationships and the dependence relationships modeled by the BN provides a comprehensive establishment and representation of the complex relationships inherent in time series data. The proposed FTS forecasting method calculates the fuzzy-probabilistic weights of each fuzzy logical relationship group using the improved fuzzy empirical probabilities to model both aleatoric and epistemic uncertainty in time series. To this end, the improved fuzzy empirical probabilities are formulated by integrating fuzzy empirical probabilities with the BN to incorporate dependence relationships from the original time series into the FTS forecasting procedure. The efficiency of the proposed forecasting model is validated on fourteen publicly available time series. Experimental results confirm the better performance of the proposed method comparing with nine existing FTS models and six numeric models. Hypothesis tests also validate the robustness and reliability of the proposed method.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A new fuzzy time series forecasting method based on clustering and weighted average approach
    Iqbal, Shafqat
    Zhang, Chongqi
    Arif, Muhammad
    Hassan, Munawar
    Ahmad, Shakeel
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (05) : 6089 - 6098
  • [32] TAIFEX and KOSPI 200 forecasting based on two-factors high-order fuzzy time series and particle swarm optimization
    Park, Jin-Il
    Lee, Dae-Jong
    Song, Chang-Kyu
    Chun, Myung-Geun
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) : 959 - 967
  • [33] FORECASTING METHOD BASED ON HIGH ORDER FUZZY TIME SERIES AND SIMULATED ANNEALING TECHNIQUE
    Radmehr, F.
    Gharneh, N. S.
    SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, 2012, 23 (02): : 176 - 190
  • [34] PROBABILISTIC AND INTUITIONISTIC FUZZY SETS-BASED METHOD FOR FUZZY TIME SERIES FORECASTING
    Gangwar, Sukhdev S.
    Kumar, Sanjay
    CYBERNETICS AND SYSTEMS, 2014, 45 (04) : 349 - 361
  • [35] Probabilistic Intuitionistic Fuzzy Set Based Intuitionistic Fuzzy Time Series Forecasting Method
    Gupta, Krishna Kumar
    Kumar, Sanjay
    MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTING WITH APPLICATIONS, ICMMSC 2018, 2020, 308 : 315 - 324
  • [36] Load Forecasting based on Fuzzy Time Series
    Ao Pei
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATERIAL, MECHANICAL AND MANUFACTURING ENGINEERING, 2015, 27 : 715 - 719
  • [37] Handling forecasting problems based on high-order fuzzy logical relationships
    Chen, Shyi-Ming
    Chen, Chao-Dian
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3857 - 3864
  • [38] Fuzzy forecasting based on high-order fuzzy logical relationships and automatic clustering techniques
    Chen, Shyi-Ming
    Tanuwijaya, Kurniawan
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 15425 - 15437
  • [39] A modified weighted method of time series forecasting in intuitionistic fuzzy environment
    Gautam, Surendra Singh
    Abhishekh
    Singh, S. R.
    OPSEARCH, 2020, 57 (03) : 1022 - 1041
  • [40] Modified Weighted for Enrollment Forecasting Based on Fuzzy Time Series
    Lee, Muhammad Hisyam
    Efendi, Riswan
    Ismail, Zuhaimy
    MATEMATIKA, 2009, 25 (01) : 67 - 78