BISMUT RICCI FLAT GENERALIZED METRICS ON COMPACT HOMOGENEOUS SPACES

被引:5
作者
Lauret, Jorge [1 ,2 ]
Will, Cynthia [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FaMAF, Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, CIEM, Cordoba, Argentina
关键词
T-DUALITY;
D O I
10.1090/tran/9013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalized metric on a manifold M, i.e., a pair (g, H), where gis a Riemannian metric and H a closed 3-form, is a fixed point of the generalized Ricci flow if and only if (g, H) is Bismut Ricci flat: H is g-harmonic and Rc(g) = 14Hg2. On any homogeneous space M = G/K, where G = G1 x G2 is a compact semisimple Lie group with two simple factors, under some mild assumptions, we exhibit a Bismut Ricci flat G-invariant generalized metric, which is proved to be unique among a 4-parameter space of metrics in many cases, including when K is neither abelian nor semisimple. On the other hand, if K is simple and the standard metric is Einstein on both G1/& pi;1(K) and G2/& pi;2(K), we give a one-parameter family of Bismut Ricci flat G-invariant generalized metrics on G/K and show that it is most likely pairwise non-homothetic by computing the ratio of Ricci eigenvalues. This is proved to be the case for every space of the form M = G x G/& UDelta;K and for M35 = SO(8) x SO(7)/G2.
引用
收藏
页码:7495 / 7519
页数:25
相关论文
共 17 条
[1]   A note on flat metric connections with antisymmetric torsion [J].
Agricola, Ilka ;
Friedrich, Thomas .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2010, 28 (04) :480-487
[2]  
Besse, 2008, EINSTEIN MANIFOLDS
[3]  
Cortes V., 2022, ARXIV
[4]  
DATRI JE, 1979, MEM AM MATH SOC, V18, P1
[5]   Ricci flow, Killing spinors, and T-duality in generalized geometry [J].
Garcia-Fernandez, Mario .
ADVANCES IN MATHEMATICS, 2019, 350 :1059-1108
[6]  
Garcia-Fernandez Mario, 2021, University Lecture Series, V76, pc2021, DOI DOI 10.1090/ULECT/076
[7]   The stability of standard homogeneous Einstein manifolds [J].
Lauret, Emilio A. A. ;
Lauret, Jorge .
MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (01)
[8]   Harmonic 3-Forms on Compact Homogeneous Spaces [J].
Lauret, Jorge ;
Will, Cynthia .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
[9]   On the stability of homogeneous Einstein manifolds II [J].
Lauret, Jorge ;
Will, Cynthia .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04) :3638-3669
[10]   The Stability of Generalized Ricci Solitons [J].
Lee, Kuan-Hui .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (09)